Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Implantable pelvic neurostimulators to restore erectile function: from concept to practice

Abstract

The quest for therapeutics to manage erectile dysfunction has evolved in the past few decades, with attention now directed towards interventions that facilitate and retain natural erectile ability. Electrical neurostimulation of the penis is a technique that could meet this objective. Although only in the early stages of development, this intervention could act as an authentic restorative therapy, targeting the penile-nerve supply that is impaired by disease states, injury or ageing. The concept is in accordance with well-substantiated neuromodulatory management approaches to erectile dysfunction, aimed at promoting neuronal integrity and function of the nerves, which are essential for regulating penile erections. The use of this technique is supported by intensive research over the past 150 years, from early experimental observations of erection responses following electrical stimulation of pelvic nerves to contemporary clinical investigations showing recovery of erection after implantation of pelvic neurostimulators in men with spinal-cord injury or undergoing radical prostatectomy. Thus, this therapy could be considered an emerging subspecialty, spanning the establishment of the neuroregulatory basis of penile erection and the invention of technologies that capitalize on the science of pelvic neurophysiology. The clinical use of penile neurostimulation could, therefore, offer a revolutionary new therapeutic approach in the field of sexual medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuroanatomy of the penis.
Fig. 2: Peripheral and central neural pathways regulating penile erection.
Fig. 3: CaverSTIM Neurostimulator System (Comphya SA).

Similar content being viewed by others

References

  1. Montorsi, F. et al. Summary of the recommendations on sexual dysfunctions in men. J. Sex. Med. 7, 3572–3588 (2010).

    Article  PubMed  Google Scholar 

  2. Burnett, A. L. et al. Erectile dysfunction: AUA guideline. J. Urol. 200, 633–641 (2018).

    Article  PubMed  Google Scholar 

  3. Salonia, A. et al. EAU working group on male sexual and reproductive health. European Association of Urology guidelines on sexual and reproductive health — 2021 update: male sexual dysfunction. Eur. Urol. 80, 333–357 (2021).

    Article  PubMed  Google Scholar 

  4. Chung, E. et al. Urological Society of Australia and New Zealand (USANZ) and Australasian Chapter of Sexual Health Medicine (AChSHM) for the Royal Australasian College of Physicians (RACP) clinical guidelines on the management of erectile dysfunction. Med. J. Aust. 217, 318–324 (2022).

    Article  PubMed  Google Scholar 

  5. Liu, J. L. et al. Restorative therapies for erectile dysfunction: position statement from the Sexual Medicine Society of North America (SMSNA). Sex. Med. 9, 100343 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Al Hashimi, M. et al. The role of different modalities of regenerative therapies in the treatment of erectile dysfunction: a global survey and global andrology forum expert recommendations. World J. Mens Health. 43, 875–891 (2025).

    Article  PubMed  Google Scholar 

  7. Hinojosa-Gonzalez, D. et al. Regenerative therapies for erectile dysfunction: a systematic review, Bayesian network meta-analysis, and meta-regression. J. Sex. Med. 21, 1152–1158 (2024).

    Article  PubMed  Google Scholar 

  8. Klotz, L. & Herschorn, S. Early experience with intraoperative cavernous nerve stimulation with penile tumescence monitoring to improve nerve sparing during radical prostatectomy. Urology 52, 537–542 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Walsh, P. C. et al. Efficacy of first-generation Cavermap to verify location and function of cavernous nerves during radical prostatectomy: a multi-institutional evaluation by experienced surgeons. Urology 57, 491–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Burnett, A. L. & Lue, T. F. Neuromodulatory therapy to improve erectile function recovery outcomes after pelvic surgery. J. Urol. 176, 882–887 (2006).

    Article  PubMed  Google Scholar 

  11. Burnett, A. L. Strategies to promote recovery of cavernous nerve function after radical prostatectomy. World J. Urol. 20, 337–342 (2003).

    Article  PubMed  Google Scholar 

  12. Kendirci, M., Bejma, J. & Hellstrom, W. J. Update on erectile dysfunction in prostate cancer patients. Curr. Opin. Urol. 16, 186–195 (2006).

    Article  PubMed  Google Scholar 

  13. Salonia, A. et al. Prevention and management of postprostatectomy sexual dysfunctions part 2: recovery and preservation of erectile function, sexual desire, and orgasmic function. Eur. Urol. 62, 273–286 (2012).

    Article  PubMed  Google Scholar 

  14. Walsh, P. C. & Donker, P. J. Impotence following radical prostatectomy: insight into etiology and prevention. J. Urol. 128, 492–497 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Walsh, P. C., Lepor, H. & Eggleston, J. C. Radical prostatectomy with preservation of sexual function: anatomical and pathological considerations. Prostate 4, 473–485 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Lepor, H., Gregerman, M., Crosby, R., Mostofi, F. K. & Walsh, P. C. Precise localization of the autonomic nerves from the pelvic plexus to the corpora cavernosa: a detailed anatomical study of the adult male pelvis. J. Urol. 133, 207–212 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Lue, T. F., Zeineh, S. J., Schmidt, R. A. & Tanagho, E. A. Neuroanatomy of penile erection: its relevance to iatrogenic impotence. J. Urol. 131, 273–280 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Schlegel, P. N. & Walsh, P. C. Neuroanatomical approach to radical cystoprostatectomy with preservation of sexual function. J. Urol. 138, 1402–1406 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Lunacek, A., Schwentner, C., Fritsch, H., Bartsch, G. & Strasser, H. Anatomical radical retropubic prostatectomy: ‘curtain dissection’ of the neurovascular bundle. BJU Int. 95, 1226–1231 (2005).

    Article  PubMed  Google Scholar 

  20. Eichelberg, C. et al. Nerve distribution along the prostatic capsule. Eur. Urol. 51, 105–110 (2007).

    Article  PubMed  Google Scholar 

  21. Chuang, M. S., O’Connor, R. C., Laven, B. A., Orvieto, M. A. & Brendler, C. B. Early release of the neurovascular bundles and optical loupe magnification lead to improved and earlier return of potency following radical retropubic prostatectomy. J. Urol. 173, 537–539 (2005).

    Article  PubMed  Google Scholar 

  22. Montorsi, F. et al. Improving the preservation of the urethral sphincter and neurovascular bundles during open radical retropubic prostatectomy. Eur. Urol. 48, 938–945 (2005).

    Article  PubMed  Google Scholar 

  23. Savera, A. T. et al. Robotic radical prostatectomy with the “Veil of Aphrodite” technique: histologic evidence of enhanced nerve sparing. Eur. Urol. 49, 1065–1073 (2006).

    Article  PubMed  Google Scholar 

  24. Tewari, A. et al. The proximal neurovascular plate and the tri-zonal neural architecture around the prostate gland: importance in the athermal robotic technique of nerve-sparing prostatectomy. BJU Int. 98, 314–323 (2006).

    Article  PubMed  Google Scholar 

  25. Costello, A. J., Brooks, M. & Cole, O. J. Anatomical studies of the neurovascular bundle and cavernosal nerves. BJU Int. 94, 1071–1076 (2004).

    Article  PubMed  Google Scholar 

  26. Takenaka, A. et al. Anatomical analysis of the neurovascular bundle supplying penile cavernous tissue to ensure a reliable nerve graft after radical prostatectomy. J. Urol. 172, 1032–1035 (2004).

    Article  PubMed  Google Scholar 

  27. Takenaka, A., Murakami, G., Matsubara, A., Han, S. H. & Fujisawa, M. Variation in course of cavernous nerve with special reference to details of topographic relationships near prostatic apex: histologic study using male cadavers. Urology 65, 136–142 (2005).

    Article  PubMed  Google Scholar 

  28. Andersson, K. E. & Wagner, G. Physiology of penile erection. Physiol. Rev. 75, 191–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Giuliano, F. A., Rampin, O., Benoit, G. & Jardin, A. Neural control of penile erection. Urol. Clin. North. Am. 22, 747–766 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Steers, W. D. Neural pathways and central sites involved in penile erection: neuroanatomy and clinical implications. Neurosci. Biobehav. Rev. 24, 507–516 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Giuliano, F. Neurophysiology of erection and ejaculation. J. Sex. Med. 8, 310–315 (2011).

    Article  PubMed  Google Scholar 

  32. Burnett, A. L. Erectile dysfunction following radical prostatectomy. JAMA 293, 2648–2653 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Chappidi, M. R. et al. Erectile dysfunction treatment following radical cystoprostatectomy: analysis of a nationwide insurance claims database. J. Sex. Med. 14, 810–817 (2017).

    Article  PubMed  Google Scholar 

  34. Towe, M. et al. A review of male and female sexual function following colorectal surgery. Sex. Med. Rev. 7, 422–429 (2019).

    Article  PubMed  Google Scholar 

  35. Walsh, P. C. The discovery of the cavernous nerves and development of nerve sparing radical retropubic prostatectomy. J. Urol. 177, 1632–1635 (2007).

    Article  PubMed  Google Scholar 

  36. Basillote, J. B., Ahlering, T. E., Skarecky, D. W., Lee, D. I. & Clayman, R. V. Laparoscopic radical prostatectomy: review and assessment of an emerging technique. Surg. Endosc. 18, 1694–1711 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, X., Wang, L., Zheng, X. & Wang, X. Comparison of perioperative, functional, and oncologic outcomes between standard laparoscopic and robotic-assisted radical prostatectomy: a systemic review and meta-analysis. Surg. Endosc. 31, 1045–1060 (2017).

    Article  PubMed  Google Scholar 

  38. Barakat, B. et al. Retzius sparing radical prostatectomy versus robot-assisted radical prostatectomy: which technique is more beneficial for prostate cancer patients (MASTER Study)? A systematic review and meta-analysis. Eur. Urol. Focus. 8, 1060–1071 (2022).

    Article  PubMed  Google Scholar 

  39. Nguyen, L. N. et al. The risks and benefits of cavernous neurovascular bundle sparing during radical prostatectomy: a systematic review and meta-analysis. J. Urol. 198, 760–769 (2017).

    Article  PubMed  Google Scholar 

  40. Eastham, J. A. et al. Clinically localized prostate cancer: AUA/ASTRO guideline, Part II: principles of active surveillance, principles of surgery, and follow-up. J. Urol. 208, 19–25 (2022).

    Article  PubMed  Google Scholar 

  41. Scardino, P. T. & Kim, E. D. Rationale for and results of nerve grafting during radical prostatectomy. Urology 57, 1016–1019 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Burnett, A. L. Rationale for cavernous nerve restorative therapy to preserve erectile function after radical prostatectomy. Urology 61, 491–497 (2003).

    Article  PubMed  Google Scholar 

  43. Shu, T., Ren, D., Cao, Y. & Wang, R. Nerve graft for erectile dysfunction after radical prostatectomy: animal study and clinical data — a narrative review. Int. J. Impot. Res. 37, 493–503 (2025).

    Article  PubMed  Google Scholar 

  44. Salonia, A. et al. Sexual rehabilitation after treatment for prostate cancer-part 2: recommendations from the fourth International Consultation for Sexual Medicine (ICSM 2015). J. Sex. Med. 14, 297–315 (2017).

    Article  PubMed  Google Scholar 

  45. Ilic, D. et al. Laparoscopic and robot-assisted vs open radical prostatectomy for the treatment of localized prostate cancer: a Cochrane systematic review. BJU Int. 121, 845–853 (2018).

    Article  PubMed  Google Scholar 

  46. Cao, L., Yang, Z., Qi, L. & Chen, M. Robot-assisted and laparoscopic vs open radical prostatectomy in clinically localized prostate cancer: perioperative, functional, and oncological outcomes: a systematic review and meta-analysis. Medicine 98, e15770 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Capogrosso, P. et al. Are we improving erectile function recovery after radical prostatectomy? Analysis of patients treated over the last decade. Eur. Urol. 75, 221–228 (2019).

    Article  PubMed  Google Scholar 

  48. Bella, A. J., Lin, G., Cagiannos, I. & Lue, T. F. Emerging neuromodulatory molecules for the treatment of neurogenic erectile dysfunction caused by cavernous nerve injury. Asian J. Androl. 10, 54–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Albersen, M., Joniau, S., Claes, H. & Van Poppel, H. Preclinical evidence for the benefits of penile rehabilitation therapy following nerve-sparing radical prostatectomy. Adv. Urol. 2008, 594868 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Facio, F. Jr. & Burnett, A. L. Penile rehabilitation and neuromodulation. ScientificWorldJournal 9, 652–664 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ryu, J. K., Suh, J. K. & Burnett, A. L. Research in pharmacotherapy for erectile dysfunction. Transl. Androl. Urol. 6, 207–215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim, S., Cho, M. C., Cho, S. Y., Chung, H. & Rajasekaran, M. R. Novel emerging therapies for erectile dysfunction. World J. Mens. Health 39, 48–64 (2021).

    Article  PubMed  Google Scholar 

  53. Parsons, J. K., Marschke, P., Maples, P. & Walsh, P. C. Effect of methylprednisolone on return of sexual function after nerve-sparing radical retropubic prostatectomy. Urology 64, 987–990 (2004).

    Article  PubMed  Google Scholar 

  54. Deliveliotis, C., Delis, A., Papatsoris, A., Antoniou, N. & Varkarakis, I. M. Local steroid application during nerve-sparing radical retropubic prostatectomy. BJU Int. 96, 533–535 (2005).

    Article  PubMed  Google Scholar 

  55. Mulhall, J. P., Klein, E. A., Slawin, K., Henning, A. K. & Scardino, P. T. A randomized, double-blind, placebo-controlled trial to assess the utility of tacrolimus (FK506) for the prevention of erectile dysfunction following bilateral nerve-sparing radical prostatectomy. J. Sex. Med. 15, 1293–1299 (2018).

    Article  PubMed  Google Scholar 

  56. Patel, H. D. et al. Effect of erythropoietin on erectile function after radical prostatectomy: the ERECT randomized clinical trial. J. Urol. 205, 1681–1688 (2021).

    Article  PubMed  Google Scholar 

  57. Burnett, A. L. & Wesselmann, U. History of the neurobiology of the pelvis. Urology 53, 1082–1089 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Kuntz, A. The Autonomic Nervous System. 2–21 (Lea & Febiger, 1929).

  59. Lue, T. F., Schmidt, R. A. & Tanagho, E. A. Electrostimulation and penile erection. Urol. Int. 40, 60–64 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Lue, T. F., Gleason, C. A., Brock, G. B., Carroll, P. R. & Tanagho, E. A. Intraoperative electrostimulation of the cavernous nerve: technique, results and limitations. J. Urol. 154, 1426–1428 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Rehman, J., Christ, G. J., Kaynan, A., Samadi, D. & Fleischmann, J. Intraoperative electrical stimulation of cavernosal nerves with monitoring of intracorporeal pressure in patients undergoing nerve sparing radical prostatectomy. BJU Int. 84, 305–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Klotz, L. Neurostimulation during radical prostatectomy: improving nerve-sparing techniques. Semin. Urol. Oncol. 18, 46–50 (2000).

    CAS  PubMed  Google Scholar 

  63. Takenaka, A. et al. Pelvic autonomic nerve mapping around the prostate by intraoperative electrical stimulation with simultaneous measurement of intracavernous and intraurethral pressure. J. Urol. 177, 225–229 (2007).

    Article  PubMed  Google Scholar 

  64. Takenaka, A. et al. Classification of the distribution of cavernous nerve fibers around the prostate by intraoperative electrical stimulation during laparoscopic radical prostatectomy. Int. J. Impot. Res. 23, 56–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Martín-Palomeque, G. et al. Novel mapping method for the intraoperative neurophysiologic monitoring of sexual function during prostate surgery. J. Clin. Neurophysiol. 35, 463–467 (2018).

    Article  PubMed  Google Scholar 

  66. Song, W. H. et al. Establishment of novel intraoperative monitoring and mapping method for the cavernous nerve during robot-assisted radical prostatectomy: results of the phase I/II, first-in-human, feasibility study. Eur. Urol. 78, 221–228 (2020).

    Article  PubMed  Google Scholar 

  67. Kim, H. L., Stoffel, D. S., Mhoon, D. A. & Brendler, C. B. A positive caver map response poorly predicts recovery of potency after radical prostatectomy. Urology 56, 561–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Holzbeierlein, J., Peterson, M. & Smith, J. A. Jr. Variability of results of cavernous nerve stimulation during radical prostatectomy. J. Urol. 165, 108–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Axelson, H. W., Johansson, E. & Bill-Axelson, A. Intraoperative cavernous nerve stimulation and Laser-Doppler flowmetry during radical prostatectomy. J. Sex. Med. 10, 2842–2848 (2013).

    Article  PubMed  Google Scholar 

  70. Karabulut, İ et al. A new method in robotic-assisted laparoscopic radical prostatectomy: personalised neuroprotective surgery with neuromonitoring system-randomised controlled study. Int. Urol. Nephrol. 52, 263–269 (2020).

    Article  PubMed  Google Scholar 

  71. Willand, M. P., Nguyen, M. A., Borschel, G. H. & Gordon, T. Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil. Neural Repair 30, 490–496 (2016).

    Article  PubMed  Google Scholar 

  72. Chan, K. M., Curran, M. W. & Gordon, T. The use of brief post-surgical low frequency electrical stimulation to enhance nerve regeneration in clinical practice. J. Physiol. 594, 3553–3559 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zuo, K. J., Gordon, T., Chan, K. M. & Borschel, G. H. Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation. Exp. Neurol. 332, 113397 (2020).

    Article  PubMed  Google Scholar 

  74. Gordon, T. Electrical stimulation of injured nerves promotes recovery in animals and humans. J. Physiol. 603, 7517–7529 (2025).

    Article  CAS  PubMed  Google Scholar 

  75. Matsushima, K. et al. Atypical physiological response to less controllable sensory stimulation in children with ASD. Res. Child. Adolesc. Psychopathol. 50, 1363–1377 (2022).

    Article  PubMed  Google Scholar 

  76. Qian, L. et al. Self-adhesive and self-sustainable bioelectronic patch for physiological feedback electronic modulation of soft organs. Adv. Mater. 36, e2406636 (2024).

    Article  PubMed  Google Scholar 

  77. Sturny, M., Karakus, S., Fraga-Silva, R., Stergiopulos, N. & Burnett, A. L. Low-intensity electrostimulation enhances neuroregeneration and improves erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 19, 686–696 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Canguven, O. & Burnett, A. Cavernous nerve injury using rodent animal models. J. Sex. Med. 5, 1776–1785 (2008).

    Article  PubMed  Google Scholar 

  79. Weyne, E. et al. European Society for Sexual Medicine Consensus Statement on the Use of the Cavernous Nerve Injury Rodent Model to Study Postradical Prostatectomy Erectile Dysfunction. Sex. Med. 8, 327–337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Stief, C. G. et al. [Functional electromyostimulation of the penile corpus cavernosum (FEMCC). Initial results of a new therapeutic option of erectile dysfunction]. Urologe A 35, 321–325 (1996).

    CAS  PubMed  Google Scholar 

  81. Gu, M. et al. Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation. Neural Regen. Res. 19, 190–195 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Cintron-Colon, A. F., Almeida-Alves, G., VanGyseghem, J. M. & Spitsbergen, J. M. GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries. Neural Regen. Res. 17, 748–753 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Li, X. et al. Electrical stimulation accelerates Wallerian degeneration and promotes nerve regeneration after sciatic nerve injury. Glia 71, 758–774 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Hardy, P. B., Wang, B. Y., Chan, K. M., Webber, C. A. & Senger, J. B. The use of electrical stimulation to enhance recovery following peripheral nerve injury. Muscle Nerve. 70, 1151–1162 (2024).

    Article  PubMed  Google Scholar 

  85. Horowitz, R. S., Randall, Z. D. & Dy, C. J. Electrical stimulation: enhancing axonal growth following peripheral nerve Injury. J. Hand Surg. Asian Pac. Vol. 29, 373–379 (2024).

    Article  PubMed  Google Scholar 

  86. Burnett, A. L., Teloken, P. E., Briganti, A., Whitehurst, T. & Montorsi, F. Intraoperative assessment of an implantable electrode array for cavernous nerve stimulation. J. Sex. Med. 5, 1949–1954 (2008).

    Article  PubMed  Google Scholar 

  87. Skoufias, S. et al. Novel concept enabling an old idea: a flexible electrode array to treat neurogenic erectile dysfunction. J. Sex. Med. 15, 1558–1569 (2018).

    Article  PubMed  Google Scholar 

  88. Dalrymple, A. N., Jones, S. T., Fallon, J. B., Shepherd, R. K. & Weber, D. J. Overcoming failure: improving acceptance and success of implanted neural interfaces. Bioelectron. Med. 11, 6 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Salatino, J. W., Ludwig, K. A., Kozai, T. D. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Eck, C. F., Chen, A. F., Klatt, B. A., D’Antonio, J. & Fu, F. The classification of implants: class I, II, III. J. Long Term Eff. Med. Implants 19, 185–193 (2008).

    Google Scholar 

  91. Dundee, P. et al. First-in-human implantable neurostimulator for erectile function rehabilitation post-prostatectomy: early results. J. Sex. Med 21, abstract 023 (2024).

    Article  Google Scholar 

  92. Glina, S. et al. Implantable neurostimulator for erectile function treatment on spinal cord injury patients - early results. J. Sex. Med. 21, abstract 026 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of David Rini, Professor of Art as Applied to Medicine, Johns Hopkins School of Medicine, whose original drawings served as the basis for redrawn Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Contributions

A.L.B., M.N.S., A.J.C. and R.A.F.-S. researched data for the article. All authors contributed substantially to discussion of the content. A.L.B., M.N.S. and R.A.F.-S. wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Arthur L. Burnett.

Ethics declarations

Competing interests

M.N.S., N.S. and R.A.F-S. are employees of Comphya SA, the company developing the CaverSTIM device. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Simone Cilio and Jesse Mills for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnett, A.L., Sturny, M.N., Costello, A.J. et al. Implantable pelvic neurostimulators to restore erectile function: from concept to practice. Nat Rev Urol (2026). https://doi.org/10.1038/s41585-025-01116-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41585-025-01116-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research