Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-frictionless ion transport within triazine framework membranes

Abstract

The enhancement of separation processes and electrochemical technologies such as water electrolysers1,2, fuel cells3,4, redox flow batteries5,6 and ion-capture electrodialysis7 depends on the development of low-resistance and high-selectivity ion-transport membranes. The transport of ions through these membranes depends on the overall energy barriers imposed by the collective interplay of pore architecture and pore–analyte interaction8,9. However, it remains challenging to design efficient, scaleable and low-cost selective ion-transport membranes that provide ion channels for low-energy-barrier transport. Here we pursue a strategy that allows the diffusion limit of ions in water to be approached for large-area, free-standing, synthetic membranes using covalently bonded polymer frameworks with rigidity-confined ion channels. The near-frictionless ion flow is synergistically fulfilled by robust micropore confinement and multi-interaction between ion and membrane, which afford, for instance, a Na+ diffusion coefficient of 1.18 × 10−9 m2 s–1, close to the value in pure water at infinite dilution, and an area-specific membrane resistance as low as 0.17 Ω cm2. We demonstrate highly efficient membranes in rapidly charging aqueous organic redox flow batteries that deliver both high energy efficiency and high-capacity utilization at extremely high current densities (up to 500 mA cm–2), and also that avoid crossover-induced capacity decay. This membrane design concept may be broadly applicable to membranes for a wide range of electrochemical devices and for precise molecular separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations showing existing and proposed ion-selective polymer membranes with varying ion channels.
Fig. 2: Characterization of negatively charged CTF membranes (SCTF).
Fig. 3: Ion transport across the SCTF-BP membrane.
Fig. 4: SCTF-BP membrane enables rapid charging of aqueous alkaline quinone flow battery.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the manuscript and its Supplementary Information, and also from the corresponding authors on reasonable request.

References

  1. Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    Article  ADS  CAS  Google Scholar 

  2. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Tang, H. et al. Fuel cells with an operational range of –20 °C to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy 7, 153–162 (2022).

    Article  ADS  CAS  Google Scholar 

  5. Xiong, P., Zhang, L., Chen, Y., Peng, S. & Yu, G. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries. Angew. Chem. Int. Ed. Engl. 60, 24770–24798 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, L., Feng, R., Wang, W. & Yu, G. Emerging chemistries and molecular designs for flow batteries. Nat. Rev. Chem. 6, 524–543 (2022).

    Article  PubMed  Google Scholar 

  7. Uliana, A. A. et al. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 372, 296–299 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zhou, X. et al. Intrapore energy barriers govern ion transport and selectivity of desalination membranes. Sci. Adv. 6, eabd9045 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lees, E. W., Mowbray, B. A. W., Parlane, F. G. L. & Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 7, 55–64 (2021).

    Article  ADS  Google Scholar 

  11. Ran, J. et al. Ion exchange membranes: new developments and applications. J. Membr. Sci. 522, 267–291 (2017).

    Article  CAS  Google Scholar 

  12. Foglia, F. et al. Disentangling water, ion and polymer dynamics in an anion exchange membrane. Nat. Mater. 21, 555–563 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Shin, D. W., Guiver, M. D. & Lee, Y. M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem. Rev. 117, 4759–4805 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  PubMed  Google Scholar 

  16. Thompson, K. A. et al. N-Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 369, 310–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Lai, H. W. H. et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science 375, 1390–1392 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Baran, M. J. et al. Design rules for membranes from polymers of intrinsic microporosity for crossover-free aqueous electrochemical devices. Joule 3, 2968–2985 (2019).

    Article  CAS  Google Scholar 

  19. Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zuo, P. et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew. Chem. Int. Ed. Engl. 59, 9564–9573 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Ye, C. et al. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat. Commun. 13, 3184 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye, C. et al. Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes. Angew. Chem. Int. Ed. Engl. 61, e202207580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baran, M. J. et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature 592, 225–231 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Low, Z. X., Budd, P. M., McKeown, N. B. & Patterson, D. A. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chem. Rev. 118, 5871–5911 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zhu, X. et al. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J. Am. Chem. Soc. 134, 10478–10484 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Z. et al. Surpassing Robeson upper limit for CO2/N2 separation with fluorinated carbon molecular sieve membranes. Chem 6, 631–645 (2020).

    Article  CAS  Google Scholar 

  28. Johnson, C. S. Jr Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34, 203–256 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Huskinson, B. et al. A metal-free organic-inorganic aqueous flow battery. Nature 505, 195–198 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhang, X., Liu, H. & Jiang, L. Wettability and applications of nanochannels. Adv. Mater. 31, 1804508 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Project (nos. 2021YFB4000300 and 2020YFB1505600) and the National Natural Science Foundation of China (nos. 21922510, 21878281, U20A20127 and 52021002). T.L.L. and J.L. acknowledge financial support by the National Science Foundation (career award, grant no. 1847674). N.B.M. and C.Y. thank the Engineering and Physical Science Research Council for funding through programme grant SynHiSel (no. EP/V047078). P.Z. acknowledges financial support by the China Postdoctoral Science Foundation (no. 2021M693066) and Fundamental Research Funds for the Central Universities (no. WK2060000028). The authors thank H. Zhang for help with positron annihilation lifetime spectroscopy experiments. Z.Y. thanks the support of his wife, Q. Fang, and his sons, G.-C. Yang and G.-Q. Yang, during the difficult time of the COVID-19 pandemic.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. and T.X. conceived and directed the project. T.L.L. provided suggestions and guidance during project implementation. P.Z., C.Y. and J.F. conducted experiments. Z.J. performed molecular simulations. P.Z., C.Y., Z.J., J.L., T.L.L., Z.Y. and T.X. analysed and discussed data. P.Z., C.Y., Z.J., Z.Y. and T.X. wrote the manuscript with input from T.L.L., J.L., J.F., U.S.S. and N.B.M. All authors offered constructive feedback on the manuscript.

Corresponding authors

Correspondence to T. Leo Liu, Zhengjin Yang or Tongwen Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Young Moo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Figs. 1–29, Tables 1–8 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, P., Ye, C., Jiao, Z. et al. Near-frictionless ion transport within triazine framework membranes. Nature 617, 299–305 (2023). https://doi.org/10.1038/s41586-023-05888-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-023-05888-x

This article is cited by

Comments

Commenting on this article is now closed.

  1. Hi dear friend
    This article was very useful and the most important thing is that you were able to clarify this issue for us
    thank you
    Also, if you want to know how I used this article, I suggest you to see this page اکتان بوستر

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing