Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbial iron limitation in the ocean’s twilight zone

Abstract

Primary production in the sunlit surface ocean is regulated by the supply of key nutrients, primarily nitrate, phosphate and iron (Fe), required by phytoplankton to fix carbon dioxide into biomass1,2,3. Below the surface ocean, remineralization of sinking organic matter rapidly regenerates nutrients, and microbial metabolism in the upper mesopelagic ‘twilight zone’ (200–500 m) is thought to be limited by the delivery of labile organic carbon4,5. However, few studies have examined the role of nutrients in shaping microbial production in the mesopelagic6,7,8. Here we report the distribution and uptake of siderophores, biomarkers for microbial Fe deficiency9 across a meridional section of the eastern Pacific Ocean. Siderophore concentrations are high not only in chronically Fe-limited surface waters but also in the twilight zone underlying the North and South Pacific subtropical gyres, two key ecosystems for the marine carbon cycle. Our findings suggest that bacterial Fe deficiency owing to low Fe availability is probably characteristic of the twilight zone in several large ocean basins, greatly expanding the region of the marine water column in which nutrients limit microbial metabolism, with potential implications for ocean carbon storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High siderophore concentrations in the mesopelagic of the eastern Pacific Ocean.
Fig. 2: Nutrient regulation of siderophore distribution.
Fig. 3: Fe–siderophore cycling in the mesopelagic ocean.
Fig. 4: Cycling of siderophores for Fe in the twilight zone of the North Pacific Subtropical Gyre.

Similar content being viewed by others

Data availability

Siderophore concentration data for the GP15 transect are publicly available through the BCODMO data archive (https://www.bco-dmo.org/dataset/875210 and https://www.bco-dmo.org/dataset/929884). Dissolved iron data for the GP15 transect have been deposited in BCODMO (https://www.bco-dmo.org/dataset/883862 and https://www.bco-dmo.org/dataset/884673). Nitrate data have been deposited in BCODMO (https://www.bco-dmo.org/dataset/777951 and https://www.bco-dmo.org/dataset/824867). The nitrate data in Fig. 3 are from the Hawaii Ocean Time-series (HOT) data archive at the University of Hawai’i at Manoa (https://hahana.soest.hawaii.edu/hot/methods/llnuts.html). Siderophore concentration data for the uptake experiment are provided at https://zenodo.org/records/12206828. The LC-ESIMS data for Extended Data Figs. 2 and 3 and Extended Data Table 1 are available at MassIVE (https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=7439be618f5949ecb1c2eac35978dba4).

References

  1. Arrigo, K. R. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  ADS  CAS  Google Scholar 

  3. Browning, T. J. & Moore, C. M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 14, 5014 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buesseler, K. O. et al. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl Acad. Sci. USA 117, 9679–9687 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Baltar, F. et al. Specific effects of trace metals on marine heterotrophic microbial activity and diversity: key role of iron and zinc and hydrocarbon-degrading bacteria. Front. Microbiol. 9, 03190 (2018).

    Article  Google Scholar 

  7. Bundy, R. M. et al. Distinct siderophores contribute to iron cycling in the mesopelagic at station ALOHA. Front. Mar. Sci. 5, 61 (2018).

    Article  Google Scholar 

  8. Mazzotta, M. G., McIlvin, M. R. & Saito, M. A. Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics 12, 654–667 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Bagg, A. & Neilands, J. B. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51, 509–518 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bressac, M. et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat. Geosci. 12, 995–1000 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Twining, B. S. et al. Differential remineralization of major and trace elements in sinking diatoms. Limnol. Oceanogr. 59, 689–704 (2014).

    Article  ADS  CAS  Google Scholar 

  12. Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. Acta 58, 3171–3182 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017).

    Article  ADS  CAS  Google Scholar 

  14. Schlitzer, R. et al. The GEOTRACES Intermediate Data Product 2017. Chem. Geol. 493, 210–223 (2018).

    Article  ADS  CAS  Google Scholar 

  15. Tortell, P. D., Maldonado, M. T. & Price, N. M. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383, 330–332 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Fourquez, M. et al. Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria. Limnol. Oceanogr. 59, 349–360 (2014).

    Article  ADS  CAS  Google Scholar 

  17. van den Berg, C. M. Evidence for organic complexation of iron in seawater. Mar. Chem. 50, 139–157 (1995).

    Article  Google Scholar 

  18. Rue, E. L. & Bruland, K. W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50, 117–138 (1995).

    Article  CAS  Google Scholar 

  19. Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3, 69 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hassler, C. S., van den Berg, C. M. G. & Boyd, P. W. Toward a regional classification to provide a more inclusive examination of the ocean biogeochemistry of iron-binding ligands. Front. Mar. Sci. 4, 19 (2017).

    Article  Google Scholar 

  21. Sexton, D. J. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Sijerčić, A. & Price, N. M. Hydroxamate siderophore secretion by Pseudoalteromonas haloplanktis during steady-state and transient growth under iron limitation. Mar. Ecol. Prog. Ser. 531, 105–120 (2015).

    Article  ADS  Google Scholar 

  23. Gauglitz, J. M. et al. Dynamic proteome response of a marine Vibrio to a gradient of iron and ferrioxamine bioavailability. Mar. Chem. 229, 103913 (2021).

    Article  CAS  Google Scholar 

  24. Park, J. et al. Siderophore production and utilization by marine bacteria in the North Pacific Ocean. Limnol. Oceanogr. 68, 1636–1653 (2023).

    Article  ADS  CAS  Google Scholar 

  25. Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Martinez, J. S. et al. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc. Natl Acad. Sci. USA 100, 3754–3759 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martinez, J. S. et al. Self-assembling amphiphilic siderophores from marine bacteria. Science 287, 1245–1247 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Xu, G., Martinez, J. S., Groves, J. T. & Butler, A. Membrane affinity of the amphiphilic marinobactin siderophores. J. Am. Chem. Soc. 124, 13408–13415 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Saha, R., Saha, N., Donofrio, R. S. & Bestervelt, L. L. Microbial siderophores: a mini review. J. Basic Microbiol. 53, 303–317 (2012).

    Article  PubMed  Google Scholar 

  31. Wilson, B. R., Bogdan, A. R., Miyazawa, M., Hashimoto, K. & Tsuji, Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol. Med. 22, 1077–1090 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schalk, I. J. & Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44, 1267–1277 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Greenwald, J. et al. Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron. J. Biol. Chem. 282, 2987–2995 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Hu, X. & Boyer, G. L. Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl. Environ. Microbiol. 62, 4044–4048 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giering, S. L. C. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).

    Article  ADS  Google Scholar 

  38. Pakulski, J. D. et al. Iron stimulation of Antarctic bacteria. Nature 383, 133–134 (1996).

    Article  ADS  CAS  Google Scholar 

  39. Granger, J. & Price, N. M. The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol. Oceanogr. 44, 541–555 (1999).

    Article  ADS  CAS  Google Scholar 

  40. Church, M. J., Hutchins, D. A. & Ducklow, H. W. Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Appl. Environ. Microbiol. 66, 455–466 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mendonca, C. M. et al. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc. Natl Acad. Sci. USA 117, 32358–32369 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kirchman, D. L., Hoffman, K. A., Weaver, R. & Hutchins, D. A. Regulation of growth and energetics of a marine bacterium by nitrogen source and iron availability. Mar. Ecol. Prog. Ser. 250, 291–296 (2003).

    Article  ADS  CAS  Google Scholar 

  43. Beier, S. et al. The transcriptional regulation of the glyoxylate cycle in SAR11 in response to iron fertilization in the Southern Ocean. Environ. Microbiol. Rep. 7, 427–434 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Kwon, E. Y., Primeau, F. & Sarmeento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).

    Article  ADS  CAS  Google Scholar 

  45. Fitzsimmons, J. N. et al. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 171, 303–324 (2015).

    Article  ADS  CAS  Google Scholar 

  46. Conway, T. M., Rosenberg, A. D., Adkins, J. F. & John, S. G. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal. Chim. Acta 793, 44–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Sieber, M. et al. Isotopic fingerprinting of biogeochemical processes and iron sources in the iron-limited surface Southern Ocean. Earth Planet. Sci. Lett. 567, 116967 (2021).

    Article  CAS  Google Scholar 

  48. Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).

    Article  CAS  Google Scholar 

  49. Ellwood, M. J. et al. Distinct iron cycling in a Southern Ocean eddy. Nat. Commun. 11, 825 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, J. et al. Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. Front. Mar. Sci. 8, 630494 (2021).

    Article  ADS  Google Scholar 

  51. Boiteau, R. M., Fitzsimmons, J. N., Repeta, D. J. & Boyle, E. A. Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography–inductively coupled plasma-mass spectrometry. Anal. Chem. 85, 4357–4362 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Boiteau, R. M. & Repeta, D. J. An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics 7, 877–884 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baars, O., Morel, F. M. & Perlman, D. H. ChelomEx: isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS. Anal. Chem. 86, 11298–11305 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Boiteau, R. M. Molecular Determination of Marine Iron Ligands by Mass Spectrometry. Thesis, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution (2016).

  56. Vraspir, J. M., Holt, P. D. & Butler, A. Identification of new members within suites of amphiphilic marine siderophores. BioMetals 24, 85–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Boiteau, R. M. et al. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc. Natl Acad. Sci. 113, 14237–14242 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kem, M. P. & Butler, A. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications. BioMetals 28, 445–459 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. GEOTRACES Intermediate Data Product Group. The GEOTRACES Intermediate Data Product 2021 version 2 (IDP2021v2). NERC EDS British Oceanographic Data Centre NOC. https://doi.org/10.5285/ff46f034-f47c-05f9-e053-6c86abc0dc7e (2023).

  60. Xiang, Y. & Lam, P. J. Size-fractionated compositions of marine suspended particles in the Western Arctic Ocean: lateral and vertical sources. J. Geophys. Res. Oceans 125, e2020JC016144 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Lam, K. Casciotti, G. Cutter, B. Summers and L. Jensen for their organization, assistance and support of the GP15 expedition. P. Morton provided assistance for the inductively coupled plasma mass spectrometry analyses at Texas A&M University. We also thank T. Burrell, R. Tabata, B. Brenes, D. Karl, A. White, P. Kong and M. Seixas for their support and assistance of the PARAGON 2022 cruise on the R/V Kilo Moana. Funding for this work was provided by National Science Foundation Chemical Oceanography Program (NSF awards OCE-1736280 and OCE-2045223 to D.J.R.; OCE-1737167 to J.N.F.; OCE-1737136 to T.M.C.; and OCE-1736896 to S.G.J.). Support was also provided for the Simons Collaboration on Ocean Processes and Ecology programme (SCOPE awards 721227 to D.J.R. and 721221 to M.J.C.), Simons Foundation Early Career Investigator Awards in Marine Microbial Ecology and Evolution (Life Sciences awards 621513 to R.M.Bo and 618401 to R.M.Bu.) and a Simons Foundation Postdoctoral Fellowship in Marine Ecology (award 729162 to L.E.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.L., L.B.-A. and D.J.R. designed the project. J.L. and L.B.-A. collected and processed the GP15 samples. J.L., L.B.-A. and M.R.M. measured and characterized siderophores in the GP15 and PARAGON 2022 samples. D.J.R., J.N.F., R.M.Bo. and R.M.Bu. developed the liquid chromatography–mass spectrometry methods and data interrogation algorithms and purified marinobactins for the PARAGON 2022 experiments. J.L., L.E.M., I.-M.S., B.N.G. and M.J.C. conducted the siderophore uptake experiments during the PARAGON 2022 cruise. M.S., N.T.L., X.B., T.M.C., J.N.F. and S.G.J. measured dissolved iron in the GP15 samples. J.L. and D.J.R. performed the data analysis and wrote the first draft of the paper. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Daniel J. Repeta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Martha Gledhill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Molecular structures of representative marinobactins and amphibactins identified in GP15 samples.

Amphibactins and marinobactins are distinguished by the number and type of amino acids in the Fe-complexing peptide head group. Each family of siderophores has several homologues that differ in the number of CH2 groups and unsaturations in the fatty acid side chain.

Extended Data Fig. 2 Characterization of siderophores in GP15 samples.

a, The 56Fe chromatogram by LC-ICP-MS for sample at station 16, 400 m. be, Extracted ion chromatograms by LC-ESIMS from the same sample. Blue traces correspond to the 56Fe–siderophore [M + H]+ isotopologue and red traces correspond to the less abundant 54Fe–siderophore [M + H]+ isotopologue. The intensity of the 54Fe isotopologue has been scaled by the 56Fe/54Fe crustal abundance ratio of 15.7. Peaks were assigned as 56Fe–marinobactin A (m/z 985.401) (b), 56Fe–marinobactin B (m/z 1,011.416) (c), 56Fe–marinobactin C (m/z 1,013.432) (d) and 56Fe–marinobactin D (m/z 1,039.452) (e).

Extended Data Fig. 3 Validation of the 57Fe–siderophore amendment.

57Fe (dark blue trace) and 56Fe (light blue trace) chromatograms of amphibactin (a) and marinobactin (b) mixtures used for the siderophore uptake experiment. c, Extracted ion chromatograms for 57Fe–amphibactins in the amphibactin stock solution. Peaks were assigned as: A, 57Fe–amphibactin C10:0 (m/z 830.353); B, 57Fe–amphibactin C12:1 (m/z 856.368); C, 57Fe–amphibactin T (m/z 858.384); and D, 57Fe–amphibactin S (m/z 884.400). The peak with an m/z of 900.394 also represents an 57Fe–amphibactin but does not contribute to the main peaks in Fig. 4. d, Extracted ion chromatograms for 57Fe–marinobactins in the marinobactin stock solution. Peaks were assigned as: A, 57Fe–marinobactin A (m/z 986.406); B, 57Fe–marinobactin B (m/z 1,012.420); C, 57Fe–marinobactin C (m/z 1,014.437); and D, 57Fe–marinobactin D (m/z 1,040.452).

Extended Data Fig. 4 Sectional plots of nitrate:DFe ratio between the surface and at 500 m in different ocean basins.

a, GEOTRACES GP19 section in the South Pacific Ocean along 170° W. b, GEOTRACES GP16 section in the equatorial Pacific Ocean along 10–15° S. c, GEOTRACES GN01 section in the Arctic Ocean along 140° W–180° E. d, GEOTRACES GA03 section in the North Atlantic Ocean along 15–40° N. e, GEOTRACES GI04 section in the Indian Ocean along 40–85° E. f, GEOTRACES GA10 section in the South Atlantic Ocean along 35–40° S. The data were extracted from GEOTRACES Intermediate Data Product 2017 (ref. 14) and 2021 (ref. 59).

Extended Data Fig. 5 Sectional plots of DFe concentration between the surface and at 500 m in different ocean basins.

a, GEOTRACES GP19 section in the South Pacific Ocean along 170° W. b, GEOTRACES GP16 section in the equatorial Pacific Ocean along 10–15° S. c, GEOTRACES GN01 section in the Arctic Ocean along 140° W–180° E. d, GEOTRACES GA03 section in the North Atlantic Ocean along 15–40° N. e, GEOTRACES GI04 section in the Indian Ocean along 40–85° E. f, GEOTRACES GA10 section in the South Atlantic Ocean along 35–40° S. The data were extracted from GEOTRACES Intermediate Data Product 2017 (ref. 14) and 2021 (ref. 59).

Extended Data Fig. 6 Sectional plots of nitrate concentration between the surface and at 500 m in different ocean basins.

a, GEOTRACES GP19 section in the South Pacific Ocean along 170° W. b, GEOTRACES GP16 section in the equatorial Pacific Ocean along 10–15° S. c, GEOTRACES GN01 section in the Arctic Ocean along 140° W–180° E. d, GEOTRACES GA03 section in the North Atlantic Ocean along 15–40° N. e, GEOTRACES GI04 section in the Indian Ocean along 40–85° E. f, GEOTRACES GA10 section in the South Atlantic Ocean along 35–40° S. The data were extracted from GEOTRACES Intermediate Data Product 2017 (ref. 14) and 2021 (ref. 59).

Extended Data Table 1 The concentration of siderophores in the particulate samples paired with dissolved samples of the closest depth collected at that station
Extended Data Table 2 Concentrations of 57Fe-siderophores (57Fe-S) and 27Al-siderophores (27Al-S) in seawater with depth after five days of incubation
Extended Data Table 3 Total siderophore concentrations for peaks A-D (Fig. 4) after five days of incubation

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Babcock-Adams, L., Boiteau, R.M. et al. Microbial iron limitation in the ocean’s twilight zone. Nature 633, 823–827 (2024). https://doi.org/10.1038/s41586-024-07905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07905-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing