Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global modules robustly emerge from local interactions and smooth gradients

Abstract

Modular structure and function are ubiquitous in biology, from the organization of animal brains and bodies to the scale of ecosystems. However, the mechanisms of modularity emergence from non-modular precursors remain unclear. Here we introduce the principle of peak selection, a process by which purely local interactions and smooth gradients can drive the self-organization of discrete global modules. The process combines strengths of the positional and Turing pattern-formation mechanisms into a model for morphogenesis. Applied to the grid-cell system of the brain, peak selection results in the self-organization of functionally distinct modules with discretely spaced spatial periods. Applied to ecological systems, it results in discrete multispecies niches and synchronous spawning across geographically distributed coral colonies. The process exhibits self-scaling with system size and ‘topological robustness’1, which renders module emergence and module properties insensitive to most parameters. Peak selection ameliorates the fine-tuning requirement for continuous attractor dynamics in single grid-cell modules and it makes a detail-independent prediction that grid module period ratios should approximate adjacent integer ratios, providing a highly accurate match to the available data. Predictions for grid cells at the transcriptional, connectomic and physiological levels promise to elucidate the interplay of molecules, connectivity and function emergence in brains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Positional versus pattern-forming mechanisms for structure formation and our hypothesis.
Fig. 2: Two local interactions with graded and fixed widths, respectively, lead to global module emergence.
Fig. 3: Multiscale linear instability, theory of topological peak selection and parameter-insensitive period ratio prediction.
Fig. 4: Emergent self-scaling of modules with system size.
Fig. 5: Enhanced robustness to weight heterogeneity, noise and activity perturbation by peak selection.
Fig. 6: Self-organization of ecological niches and synchronous coral spawning through peak selection.

Similar content being viewed by others

Data availability

Data were collected by running the codes available at https://github.com/FieteLab.

Code availability

Codes used to run the model and analyse data are available at https://github.com/FieteLab.

References

  1. Thouless, D. Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, 1998).

  2. Sales-Pardo, M. The importance of being modular. Science 357, 128–129 (2017).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  3. Chen, G., Kang, B., Lindsey, J., Druckmann, S. & Li, N. Modularity and robustness of frontal cortical networks. Cell 184, 3717–3730 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  4. Park, J.-M., Chen, M., Wang, D. & Deem, M. W. Modularity enhances the rate of evolution in a rugged fitness landscape. Phys. Biol. 12, 025001 (2015).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  5. von Humboldt, W. On the Diversity of Human Language Construction and its Influence on the Mental Development of the Human Species (Cambridge Univ. Press, 2005).

  6. Fiete, I. R., Burak, Y. & Brookings, T. What grid cells convey about rat location. J. Neurosci. 28, 6858–6871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  8. Green, J. B. A. & Sharpe, J. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203–1211 (2015).

    Article  CAS  PubMed  MATH  Google Scholar 

  9. Durrieu, L. et al. Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis. Mol. Syst. Biol. 14, e8355 (2018).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  10. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R Soc. Lond. B 237, 37–72 (1952).

  11. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  12. Yoon, K. J. et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16, 1077–1084 (2013).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  13. Gu, Y. et al. A map-like micro-organization of grid cells in the medial entorhinal cortex. Cell 175, 736–750 (2018).

    Article  MATH  Google Scholar 

  14. Trettel, S. G., Trimper, J. B., Hwaun, E., Fiete, I. R. & Colgin, L. L. Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors. Nat. Neurosci. 22, 609–617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gardner, R. J., Lu, L., Wernle, T., Moser, M.-B. & Moser, E. I. Correlation structure of grid cells is preserved during sleep. Nat. Neurosci. 22, 598–608 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  16. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  17. Khona, M. & Fiete, I. R. Attractor and integrator networks in the brain. Nat. Rev. Neurosci. 23, 744–766 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  18. Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

    Article  ADS  MathSciNet  PubMed  PubMed Central  MATH  Google Scholar 

  19. Schweisguth, F. & Corson, F. Self-organization in pattern formation. Dev. Cell 49, 659–677 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  20. Gregor, T., Tank, D. W., Wieschaus, E. F. & Bialek, W. Probing the limits to positional information. Cell 130, 153–164 (2007).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  21. Wang, X.-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  22. Beed, P. et al. Inhibitory gradient along the dorsoventral axis in the medial entorhinal cortex. Neuron 79, 1197–1207 (2013).

    Article  CAS  PubMed  MATH  Google Scholar 

  23. Pastoll, H., Garden, D. L., Papastathopoulos, I., Sürmeli, G. & Nolan, M. F. Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex. eLife 9, e52258 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fulcher, B. D., Murray, J. D., Zerbi, V. & Wang, X.-J. Multimodal gradients across mouse cortex. Proc. Natl Acad. Sci. USA 116, 4689–4695 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Garden, D. L. F., Dodson, P. D., O’Donnell, C., White, M. D. & Nolan, M. F. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron 60, 875–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Grosser, S. et al. Parvalbumin interneurons are differentially connected to principal cells in inhibitory feedback microcircuits along the dorsoventral axis of the medial entorhinal cortex. eNeuro 8, ENEURO.0354-20.2020 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  Google Scholar 

  28. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  29. Guanella, A., Kiper, D. & Verschure, P. A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 17, 231–240 (2007).

    Article  PubMed  MATH  Google Scholar 

  30. Couey, J. J. et al. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci. 16, 318–324 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72–78 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Giocomo, L. M., Zilli, E. A., Fransén, E. & Hasselmo, M. E. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315, 1719–1722 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).

    Article  ADS  CAS  MATH  Google Scholar 

  34. Wei, X.-X., Prentice, J. & Balasubramanian, V. A principle of economy predicts the functional architecture of grid cells. eLife 4, e08362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stemmler, M., Mathis, A. & Herz, A. V. M. Connecting multiple spatial scales to decode the population activity of grid cells. Sci. Adv. 1, e1500816 (2015).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  36. Banino, A. et al. Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  37. Giocomo, L. M. et al. Grid cells use hcn1 channels for spatial scaling. Cell 147, 1159–1170 (2011).

    Article  CAS  PubMed  MATH  Google Scholar 

  38. Tukker, J. J. et al. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol. Rev. 102, 653–688 (2022).

    Article  PubMed  MATH  Google Scholar 

  39. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  40. Burak, Y. & Fiete, I. Do we understand the emergent dynamics of grid cell activity? J. Neurosci. 26, 9352–9354 (2006).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  41. Kang, L. & Balasubramanian, V. A geometric attractor mechanism for self-organization of entorhinal grid modules. eLife 8, 8 (2019).

    Article  MATH  Google Scholar 

  42. Power, D. A. et al. What can ecosystems learn? Expanding evolutionary ecology with learning theory. Biol. Direct 10, 69 (2015).

  43. Turelli, M. Niche overlap and invasion of competitors in random environments. I. Models without demographic stochasticity. Theor. Pop. Biol. 20, 1–56 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  44. Schellenberger Costa, D. et al. Plant niche breadths along environmental gradients and their relationship to plant functional traits. Divers. Distrib. 24, 1869–1882 (2018).

    Article  MATH  Google Scholar 

  45. Salas-López, A., Violle, C., Munoz, F., Menzel, F. & Orivel, J. Effects of habitat and competition on niche partitioning and community structure in neotropical ants. Front. Ecol. Evol. 10, 863080 (2022).

  46. Conway, M. Niche Evolution Along a Gradient of Ecological Specialization (Univ. of Maine, 2019).

  47. Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl Acad. Sci. USA 118, e2101985118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4, e09991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Keith, S. A. et al. Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proc. R. Soc. B 283, 20160011 (2016).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  50. Heys, J. G., Rangarajan, K. V. & Dombeck, D. A. The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84, 1079–1090 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, X.-J. Theory of the multiregional neocortex: large-scale neural dynamics and distributed cognition. Ann. Rev. Neurosci. 45, 533–560 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  52. Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Wilson, L. & Maden, M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev. Biol. 282, 1–13 (2005).

    Article  CAS  PubMed  MATH  Google Scholar 

  54. Sun, J. & Deem, M. W. Spontaneous emergence of modularity in a model of evolving individuals. Phys. Rev. Lett. 99, 228107 (2007).

    Article  ADS  PubMed  MATH  Google Scholar 

  55. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  56. Schaeffer, R. et al. Self-supervised learning of representations for space generates multi-modular grid cells. In Adv. Neural Info. Proc. Syst. (eds Oh, A. et al.) 36, 23140–23157 (Curran Associates, Inc., 2023).

  57. Camley, B. A. Collective gradient sensing and chemotaxis: modeling and recent developments. J. Phys. Condens. Matter 30, 223001 (2018).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  58. St Johnston, D. & Nüsslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992).

    Article  MATH  Google Scholar 

  59. Paddock, S. W., Hazen, E. J. & DeVries, P. J. Methods and applications of three-color confocal imaging. BioTechniques 22, 120–126 (1997).

    Article  CAS  PubMed  MATH  Google Scholar 

  60. Goldman, M. S., Compte, A. & Wang, X.-J. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 165–178 (Academic, 2009).

  61. Deneve, S., Latham, P. E. & Pouget, A. Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2, 740–745 (1999).

    Article  CAS  PubMed  MATH  Google Scholar 

  62. Brunel, N. Is cortical connectivity optimized for storing information? Nat. Neurosci. 19, 749–755 (2016).

    Article  CAS  PubMed  MATH  Google Scholar 

  63. Yoon, K. J., Lewallen, S., Kinkhabwala, A. A., Tank, D. W. & Fiete, I. R. Grid cell responses in 1D environments assessed as slices through a 2D lattice. Neuron 89, 1086–1099 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsodyks, M. V. & Feigelman, M. V. The enhanced storage capacity in neural networks with low activity level. Europhys. Lett. 6, 101–105 (1988).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Kardar for insightful discussions and to J. Widloski, A. Boopathy and L. Dong for comments on the manuscript. This work has been supported by ONR award N00014-19-1-2584, NSF-CISE award IIS-2151077 under the Robust Intelligence programme, ARO-MURI award W911NF-23-1-0277, Simons Foundation SCGB programme 1181110 and the MathWorks Science Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing were by I.F., M.K. and S.C. Funding was acquired by I.F. Coding and analysis were undertaken by M.K. and S.C.

Corresponding authors

Correspondence to Sarthak Chandra or Ila Fiete.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Matthew Nolan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Naive addition of gradient in CAN does not form modularity.

(a-c) Naive merger of the two mechanisms by smoothly scaling the width of the pattern-forming lateral interaction in the grid cell CAN model18 does not generate global modularity in 2-dimensional (b) or 1-dimensional (c) grid models: the result is one smoothly varying periodic pattern.

Extended Data Fig. 2 Generalized peak-selection mechanism leads to modularity emergence.

(a) Energy landscape (Lyapunov function) for dynamics of the abstract state variable x consisting of a rugged multi-minimum function and a smooth, broad single-minimum function with minimum located at x*. (b) As a parameter θ is varied, x* varies as g(θ), where g is some monotonic function. (c) The resulting fixed points \(\bar{x}\), as a function of the smoothly varied θ, form sets with a constant value, followed by an abrupt jump to a new set of values, and so on in a series of discrete steps, defining a set of discrete modules. (See SI Sec. I for simulation details).

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–17 and references.

Reporting Summary

Peer Review File

Supplementary Video

Peak selection process in Fourier space for a graded kernel and a fixed-scale kernel. Although the continuous varying pattern-forming kernel (in red) has a smoothly varying maxima, when it is added to a fixed-scale kernel (in blue), the composite interaction (in purple) has a maximum that changes in discrete jumps (denoted by black circle). Increasing time in the animation corresponds varying dorsoventral position. The discrete changes in the location of the maximum, despite continuous gradients, result in the formation of grid-cell modules in a single attractor sheet with smoothly varying continuous biophysical gradients.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khona, M., Chandra, S. & Fiete, I. Global modules robustly emerge from local interactions and smooth gradients. Nature 640, 155–164 (2025). https://doi.org/10.1038/s41586-024-08541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08541-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing