Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative thermal expansion and oxygen-redox electrochemistry

Subjects

Abstract

Structural disorder within materials gives rise to fascinating phenomena, attributed to the intricate interplay of their thermodynamic and electrochemical properties1,2. Oxygen-redox (OR) electrochemistry offers a breakthrough in capacity limits, while inducing structural disorder with reduced electrochemical reversibility3,4,5. The conventional explanation for the thermal expansion of solids relies on the Grüneisen relationship, linking the expansion coefficient to the anharmonicity of the crystal lattice6. However, this paradigm may not be applicable to OR materials due to the unexplored dynamic disorder–order transition in such systems7,8. Here we reveal the presence of negative thermal expansion with a large coefficient value of −14.4(2) × 10−6 °C−1 in OR active materials, attributing this to thermally driven disorder–order transitions. The modulation of OR behaviour not only enables precise control over the thermal expansion coefficient of materials, but also establishes a pragmatic framework for the design of functional materials with zero thermal expansion. Furthermore, we demonstrate that the reinstatement of structural disorder within the material can also be accomplished through the electrochemical driving force. By adjusting the cut-off voltages, evaluation of the discharge voltage change indicates a potential for nearly 100% structure recovery. This finding offers a pathway for restoring OR active materials to their pristine state through operando electrochemical processes, presenting a new mitigation strategy to address the persistent challenge of voltage decay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Probing OR electrochemistry through NTE.
Fig. 2: Controlling OR electrochemistry to tune TEC on different states of delithiation.
Fig. 3: Controlling OR electrochemistry to design ZTE material.
Fig. 4: Electrochemistry-induced disorder–order transition.

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kim, B. et al. A theoretical framework for oxygen redox chemistry for sustainable batteries. Nat. Sustain. 5, 708–716 (2022).

    Article  Google Scholar 

  4. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Sleight, A. Zero-expansion plan. Nature 425, 674–675 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Qiu, B. et al. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep. Phys. Sci. 1, 100028 (2020).

    Article  Google Scholar 

  8. Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article  ADS  CAS  Google Scholar 

  9. Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F. X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2016).

    Article  PubMed  Google Scholar 

  10. Ma, E. Tuning order in disorder. Nat. Mater. 14, 547 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Keen, D. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Onsager, L. Crystal statistics I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Evans, J. S. O. et al. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8. Science 275, 61 (1996).

    Article  Google Scholar 

  14. Mary, T. A., Evans, J. S., Vogt, T. & Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272, 90 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Lunkenheimer, P., Loidl, A., Riechers, B., Zaccone, A. & Samwer, K. Thermal expansion and the glass transition. Nat. Phys. 19, 694–699 (2023).

    Article  CAS  Google Scholar 

  16. Zhang, L. et al. Giant polarization in super-tetragonal thin films through interphase strain. Science 361, 494 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Zheng, X. G. et al. Giant negative thermal expansion in magnetic nanocrystals. Nat. Nanotech. 3, 724–726 (2008).

    Article  ADS  CAS  Google Scholar 

  18. Liao, J. et al. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nat. Commun. 13, 2090 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto, H., Imai, T., Sakai, Y. & Azuma, M. Colossal negative thermal expansion in electron-doped PbVO3 perovskites. Angew. Chem. Inter. Ed. 57, 8170–8173 (2018).

    Article  CAS  Google Scholar 

  20. Azuma, M. et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2, 347 (2011).

    Article  ADS  PubMed  Google Scholar 

  21. Wang, W. et al. Local orthorhombic lattice distortions in the paramagnetic tetragonal phase of superconducting NaFe1-xNixAs. Nat. Commun. 9, 3128 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  ADS  CAS  Google Scholar 

  23. Ulvestad, A. et al. Topological defect dynamics in operando battery nanoparticles. Science 348, 1344 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  ADS  CAS  Google Scholar 

  25. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. McCalla, E. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frati, F., Hunault, M. O. J. Y. & de Groot, F. M. F. Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120, 4056–4110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Assat, G., Iadecola, A., Foix, D., Dedryvère, R. & Tarascon, J.-M. Direct quantification of anionic redox over long cycling of Li-rich NMC via hard X-ray photoemission spectroscopy. ACS Energy Lett. 3, 2721–2728 (2018).

    Article  CAS  Google Scholar 

  30. Dai, K. et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 3, 1–24 (2019).

    Article  Google Scholar 

  31. Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    Article  ADS  CAS  Google Scholar 

  32. Zhou, Y. et al. Sufficient oxygen redox activation against voltage decay in Li-rich layered oxide cathode materials. ACS Mater. Lett. 3, 433–441 (2021).

    Article  CAS  Google Scholar 

  33. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong, J. et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Yin, W. et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Csernica, P. M. et al. Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021).

    Article  ADS  CAS  Google Scholar 

  38. Cupid, D. M. et al. Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure. Int. J. Mater. Res. 108, 1008–1021 (2017).

    Article  CAS  Google Scholar 

  39. Yin, C. et al. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Mater. 35, 388 (2021).

    Article  Google Scholar 

  40. Li, X. et al. Rational design of thermally stable polymorphic layered cathode materials for next generation lithium rechargeable batteries. Mater. Today 61, 91 (2022).

    Article  CAS  Google Scholar 

  41. Yin, C. et al. Structural insights into composition design of Li-rich layered cathode materials for high-energy rechargeable battery. Mater. Today 51, 15 (2021).

    Article  CAS  Google Scholar 

  42. Zhang, M. et al. High pressure effect on structural and electrochemical properties of anionic redox-based lithium transition metal oxides. Matter 4, 164–181 (2021).

    Article  CAS  Google Scholar 

  43. Zhou, X., Wang, F., Zhu, Y. & Liu, Z. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 21, 3353–3358 (2011).

    Article  CAS  Google Scholar 

  44. Yang, T.-Y., Wen, W. & Yin, G.-Z. Introduction of the X-ray diffraction beamline of SSRF. Nucl. Sci. Tech. 26, 020101 (2015).

    Google Scholar 

  45. Chen, J. et al. Tunable thermal expansion in framework materials through redox intercalation. Nat. Commun. 8, 14441 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Casas-Cabanas, M., Reynaud, M., Rikarte, J., Horbach, P. & Rodríguez-Carvajal, J. FAULTS: a program for refinement of structures with extended defects. J. Appl. Crystallogr. 49, 2259–2269 (2016).

    Article  ADS  CAS  Google Scholar 

  47. Shunmugasundaram, R., Arumugam, R. S. & Dahn, J. A study of stacking faults and superlattice ordering in some Li-rich layered transition metal oxide positive electrode materials. J. Electrochem. Soc. 163, A1394–A1400 (2016).

    Article  CAS  Google Scholar 

  48. Toby, B. H. & Dreele, R. B. V. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52272253, 52472266), the External Cooperation Program of the Chinese Academy of Sciences (181GJHZ2024126MI), the ‘Lingyanʼ Research and Development Plan of Zhejiang Province (2022C01071), a Low-Cost Cathode Material (TC220H06P), the R&D Project of Jiangsu Province (BKBG2024021), The “Innovation Yongjiang 2035” Key R&D Program (2025Z063), the Zhongke Hangzhou Bay Institute (Ningbo) New Materials Co. Ltd. (NIMTE-61-2024-2), the Natural Science Foundation of Ningbo (2024QL041) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2022299). M.Z. and Y.S.M. acknowledge support from the University of Chicago through startup funding. W.W. acknowledges support from the Photon Science Research Center for Carbon Dioxide. We thank beamline BL14B1 of the Shanghai Synchrotron Radiation Facility for providing the beamtime. The authors appreciate the neutron beamtime at the High-resolution Neutron Diffractometer (TREND) (https://cstr.cn/31113.02.CSNS.TREND) and General Purpose Powder Diffractometer (GPPD) (https://csns.cn/31113.02.CSNS.GPPD) at the China Spallation Neutron Source (CSNS) (https://cstr.cn/31113.02.CSNS), and thank W. Ji, S. Deng, F. Shen, Z. Tan, W. Xie, Q. Ma and D. Zhang for their technical assistance during the neutron scattering experiments.

Author information

Authors and Affiliations

Authors

Contributions

B.Q. conceived the project. B.Q., M.Z., Y.S.M. and Z.L. supervised the project. M.Z. and B.Q. performed the mechanism analysis. Y.Z., K.G., Z.Z. and B.Q. performed the synthesis work. Y.Z. performed the Rietveld refinement for the X-ray and neutron diffraction. Y.Z., K.G. and W.W. performed the X-ray characterization. T.Z., P.M., L.H. and Y.X. performed the neutron characterization. H.L. and B.Q. conducted the voltage recovery. B.Q. and M.Z. prepared the initial draft of the manuscript. S.B. helped revise the manuscript. B.Q., M.Z., Y.S.M. and Z.L. organized the work and helped with the drafting of the manuscript. All the authors discussed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Minghao Zhang, Zhaoping Liu or Ying Shirley Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Takumi Nishikubo, Guixin Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–40, Table 1 and References.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, B., Zhou, Y., Liang, H. et al. Negative thermal expansion and oxygen-redox electrochemistry. Nature 640, 941–946 (2025). https://doi.org/10.1038/s41586-025-08765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08765-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing