Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal-centred planar [15]annulenes

Abstract

The discovery of ferrocene1 heralded the advent of modern organometallic chemistry. Characterized by the π-coordination of a metal by one or two planar annulene anions, ferrocenes and their analogues2,3,4 exemplify the archetype of out-of-plane annulene metal complexes. By contrast, the integration of metal within the annulene core to form in-plane annulene metal complexes featuring metal–carbon σ bonds has been obstructed not only by the synthetic difficulty and the non-planarity of annulenes with appropriate internal dimensions, but also by the difficulty of embedding the metal. These challenges have prevented the isolation of such in-plane annulene metal complexes. Here we report the preparation of three metal-centred planar [15]annulene frameworks. The most symmetrical fragment has D5h symmetry, with the metal centre shared by five identical five-membered rings. Density functional theory calculations demonstrate that metal d orbitals participate in conjugation with these five-membered rings, rendering all of them aromatic. The overall framework bears a loose structural and spectroscopic analogy to metallo-expanded porphyrins with multiple aza donors5, which thus provides a nexus between annulene chemistry and classic heteroatom-based coordination chemistry. The present systems display high stability and are easily functionalized. We thus suggest that metal-centred planar annulenes could emerge as promising building blocks for materials science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coordination chemistry of annulenes, porphyrin and related compounds.
Fig. 2: Synthesis and characterization of metal-centred planar [15]annulenes.
Fig. 3: Theoretical analysis of 5a′.
Fig. 4: Post-functionalization of 5a and 4a.

Similar content being viewed by others

Data availability

All the data needed to evaluate the conclusions in this work are present in the article or Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2374570 (2c), 2374585 (3b), 2374576 (4a), 2374580 (4b), 2374584 (4c), 2374575 (5a), 2374581 (5b), 2374579 (7), 2374582 (8) and 2392762 (10). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Astruc, D. The numerous paths of ferrocene. Nat. Chem. 15, 1650 (2023).

    Article  PubMed  CAS  Google Scholar 

  2. Shima, T. et al. Hydroamination of alkenes with dinitrogen and titanium polyhydrides. Nature 632, 307–312 (2024).

    Article  PubMed  CAS  Google Scholar 

  3. Münzfeld, L. et al. Synthesis and properties of cyclic sandwich compounds. Nature 620, 92–97 (2023).

    Article  ADS  PubMed  Google Scholar 

  4. Malischewski, M., Adelhardt, M., Sutter, J., Meyer, K. & Seppelt, K. Isolation and structural and electronic characterization of salts of the decamethylferrocene dication. Science 353, 678–682 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Burrell, A. K., Hemmi, G., Lynch, V. & Sessler, J. L. Uranylpentaphyrin: an actinide complex of an expanded porphyrin. J. Am. Chem. Soc. 113, 4690–4692 (1991).

    Article  CAS  Google Scholar 

  6. Faraday, M. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Philos. Trans. R. Soc. London 115, 440–466 (1825).

    Article  ADS  Google Scholar 

  7. Arndt, S. & Okuda, J. Mono(cyclopentadienyl) complexes of the rare-earth metals. Chem. Rev. 102, 1953–1976 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. Pampaloni, G. Aromatic hydrocarbons as ligands. Recent advances in the synthesis, the reactivity and the applications of bis(η6-arene) complexes. Coord. Chem. Rev. 254, 402–419 (2010).

    Article  CAS  Google Scholar 

  9. Mahieu, N., Piątkowski, J., Simler, T. & Nocton, G. Back to the future of organolanthanide chemistry. Chem. Sci. 14, 443–457 (2023).

    Article  PubMed  CAS  Google Scholar 

  10. Afanasyev, O. I. et al. Cyclobutadiene metal complexes: a new class of highly selective catalysts. An application to direct reductive amination. ACS Catal. 6, 2043–2046 (2016).

    Article  CAS  Google Scholar 

  11. Zhou, Z. & Petrukhina, M. A. Adding multiple electrons to helicenes: how they respond. Chem. Sci. 16, 468–479 (2025).

    Article  PubMed  Google Scholar 

  12. Spitler, E. L., Johnson, C. A. II & Haley, M. M. Renaissance of annulene chemistry. Chem. Rev. 106, 5344–5386 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Masamune, S., Hojo, K., Hojo, K., Bigam, G. & Rabenstein, D. L. The geometry of [10]annulenes. J. Am. Chem. Soc. 93, 4966–4968 (1971).

    Article  CAS  Google Scholar 

  14. Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 462, 819–821 (2003).

    Article  ADS  Google Scholar 

  15. Moll, J. F., Pemberton, R. P., Gutierrez, M. G., Castro, C. & Karney, W. L. Configuration change in [14]annulene requires Möbius antiaromatic bond shifting. J. Am. Chem. Soc. 129, 274–275 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. Stawski, W. et al. The anti-aromatic dianion and aromatic tetraanion of [18]annulene. Nat. Chem. 16, 998–1002 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Białek, M. J., Hurej, K., Furuta, H. & Latos-Grażyński, L. Organometallic chemistry confined within a porphyrin-like framework. Chem. Soc. Rev. 52, 2082–2144 (2023).

    Article  PubMed  Google Scholar 

  18. Vogel, E., Köcher, M., Schmickler, H. & Lex, J. Porphycene-a novel porphin isomer. Angew. Chem. Int. Ed. Engl. 25, 257–259 (1986).

    Article  Google Scholar 

  19. Grover, V. & Ravikanth, M. Coordination chemistry of porphycenes. Coord. Chem. Rev. 516, 215999 (2024).

    Article  CAS  Google Scholar 

  20. Thakur, M. S. et al. Metal coordinated macrocyclic complexes in different chemical transformations. Coord. Chem. Rev. 471, 214739 (2022).

    Article  CAS  Google Scholar 

  21. Sessler, J. L., Gross, Z. & Furuta, H. Introduction: expanded, contracted, and isomeric porphyrins. Chem. Rev. 117, 2201–2202 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Lash, T. D. Carbaporphyrinoid systems. Chem. Rev. 117, 2313–2446 (2017).

    Article  PubMed  CAS  Google Scholar 

  23. Xu, B. et al. Syntheses, structures and reactivities of strained fused-ring metallaaromatics containing planar eleven-carbon chains with a shiftable metal carbyne bond. Nat. Commun. 14, 4378 (2024).

    Article  ADS  Google Scholar 

  24. Byrne, P. A. & Gilheany, D. G. The mechanism of phosphonium ylide alcoholysis and hydrolysis: concerted addition of the O–H bond across the P=C bond. Chem. Eur. J. 22, 9140–9154 (2016).

    Article  PubMed  CAS  Google Scholar 

  25. Che, C.-M. et al. Triphenylphosphine reduction of dioxoosmium(VI) porphyrins. Crystal structures of bis(triphenylphosphine oxide) (octaethylporphinato)osmium(II) and bis(triphenylphosphine) (meso-tetraphenylporphinato)osmium(II). Inorg. Chem. 26, 3907–3911 (1987).

    Article  CAS  Google Scholar 

  26. Zhu, C. et al. A metal-bridged tricyclic aromatic system: synthesis of osmium polycyclic aromatic complexes. Angew. Chem. Int. Ed. 53, 6232–6236 (2014).

    Article  CAS  Google Scholar 

  27. Zhu, C. et al. σ-Aromaticity in an unsaturated ring: osmapentalene derivatives containing a metallacyclopropene unit. Angew. Chem. Int. Ed. 54, 3102–3106 (2015).

    Article  CAS  Google Scholar 

  28. Schleyer, P. V. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 2873–2876 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. Fallah-Bagher-Shaidaei, H., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. V. R. Which NICS aromaticity index for planar π rings is best? Org. Lett. 8, 863–866 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Foroutan-Nejad, C. Is NICS a reliable aromaticity index for transition metal clusters? Theor. Chem. Acc. 134, 8 (2015).

    Article  Google Scholar 

  32. Sundholm, D., Fliegl, H. & Berger, R. J. F. Calculations of magnetically induced current densities: theory and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 639–678 (2016).

    Article  CAS  Google Scholar 

  33. Knizia, G. & Klein, J. E. M. N. Electron flow in reaction mechanisms—revealed from first principles. Angew. Chem. Int. Ed. 54, 5518–5522 (2015).

    Article  CAS  Google Scholar 

  34. Gross, C. L. & Girolami, G. S. Synthesis and characterization of osmium (IV) polyhydride complexes of stoichiometry (C5Me5)OsH3(L). Crystal structures of (C5Me5)OsH3(AsPh3) and (C5Me5)OsH3(PPh3). Organometallics 25, 4792–4798 (2006).

    Article  CAS  Google Scholar 

  35. Chen, D., Hua, Y. & Xia, H. Metallaaromatic chemistry: history and development. Chem. Rev. 120, 12994–13086 (2020).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 92156021, 22350009, 21931002, 22371111 and 22071098), the Guangdong Provincial Key Laboratory of Catalysis (grant no. 2020B121201002), Introduction of Major Talent Projects in Guangdong Province (grant no. 2019CX01C079), Guangdong Grants (grant no. 2021ZT09C064), High Level of Special Funds (G03050K003), the Postdoctoral Fellowship Program of CPSF (GZB20240287) and the Outstanding Talents Training Fund in Shenzhen. The work in Austin was supported by the National Science Foundation (CHE-2304731 to J.L.S.) with further support provided by the Robert A. Welch Foundation (F-0018). The theoretical work was supported by the Center for Computational Science and Engineering at SUSTech. We thank J. Li of Tsinghua University, L. L. Liu, X. Jiang, X. Chang and Z. Dong of Southern University of Science and Technology, and H. Li of Zhejiang University for providing helpful suggestions in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.C. and H.X. devised the project and supervised the experimental study. B.X., J.L.S. and H.X. analysed the experimental data. B.X., K.R., Y.C., J.Q., W.Z. and B.C. performed the experimental work. K.R., M.L. and Z.L. performed the computational analyses. B.X., D.C., K.R., M.L., J.L.S. and H.X. wrote the paper and prepared the supplementary information with input from all authors. All authors discussed the results in detail and commented on the manuscript.

Corresponding author

Correspondence to Haiping Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Fabrizio Ortu, Miquel Solà and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, characterization details, optimized Cartesian coordinates, Figs. 1–160, Tables 1–24 and references.

Crystallographic Data

Crystallographic data for complexes 2c, 2d, 3b, 4a, 4b, 4c, 5a, 5b, 7, 8 and 10.

Peer Review File

Supplementary Video 1

Simulation of the gauge-including magnetically induced current (GIMIC) in the [55555] metallo-annulene model 5a′. This video shows the diatropic ring currents of 5a′, and suggests the [55555] metallo-annulene skeleton is aromatic.

Supplementary Video 2

Simulation of the gauge-including magnetically induced current (GIMIC) in benzene. This video shows the diatropic ring currents, and suggests benzene is aromatic.

Supplementary Video 3

Simulation of the gauge-including magnetically induced current (GIMIC) in the [55753] metallo-annulene model 2a′. This video shows the diatropic ring currents of 2a′, and suggests the [55753] metallo-annulene skeleton is aromatic.

Supplementary Video 4

Simulation of the gauge-including magnetically induced current (GIMIC) in the [55735] metallo-annulene model 3a′. This video shows the diatropic ring currents of 3a′, and suggests the [55735] metallo-annulene skeleton is aromatic.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Chen, D., Ruan, K. et al. Metal-centred planar [15]annulenes. Nature 641, 106–111 (2025). https://doi.org/10.1038/s41586-025-08841-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08841-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing