Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Driven bright solitons on a mid-infrared laser chip

Abstract

Despite the continuing progress in integrated optical frequency comb technology1, compact sources of short, bright pulses in the mid-infrared wavelength range from 3 to 12 μm so far remain beyond reach. The state-of-the-art ultrafast pulse emitters in the mid-infrared are complex, bulky and inefficient systems based on the downconversion of near-infrared or visible pulsed laser sources. Here we show a purely DC-driven semiconductor laser chip that generates 1-ps solitons at the centre wavelength of 8.3 μm at GHz repetition rates. The soliton generation scheme is akin to that of passive nonlinear Kerr resonators2. It relies on a fast bistability in active nonlinear laser resonators, unlike traditional passive mode-locking, which relies on saturable absorbers3, or active mode-locking by gain modulation in semiconductor lasers4. Monolithic integration of all components—drive laser, active ring resonator, coupler and pump filter—enables turnkey generation of bright solitons that remain robust for hours of continuous operation without active stabilization. Such devices can be readily produced at industrial laser foundries using standard fabrication protocols. Our work unifies the physics of active and passive microresonator frequency combs while simultaneously establishing a technology for nonlinear integrated photonics in the mid-infrared5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pulse generation in integrated resonator systems.
Fig. 2: Driven bright solitons in an active resonator.
Fig. 3: On-chip pump filtering.
Fig. 4: Integrated turnkey soliton generator.

Similar content being viewed by others

Data availability

The experimental and numerical data generated in this study have been deposited in the Harvard Dataverse database and are available at https://doi.org/10.7910/DVN/KH4HFZ under the Creative Commons Attribution 4.0 International license (CC BY 4.0).

References

  1. Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article  ADS  CAS  Google Scholar 

  2. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  PubMed  Google Scholar 

  3. Liu, S. et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica 6, 128–134 (2019).

    Article  ADS  CAS  Google Scholar 

  4. Hillbrand, J. et al. Picosecond pulses from a mid-infrared interband cascade laser. Optica 6, 1334–1337 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Ren, D., Dong, C. & Burghoff, D. Integrated nonlinear photonics in the longwave-infrared: a roadmap. MRS Commun. 13, 942–956 (2023).

    Article  ADS  CAS  Google Scholar 

  6. Marin-Palomo, P. et al. Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode. Opt. Express 27, 31110–31129 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Dausinger, F., Lubatschowski, H. & Lichtner, F. Femtosecond Technology for Technical and Medical Applications (Springer, 2004).

  8. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  CAS  Google Scholar 

  10. Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).

    Article  ADS  CAS  Google Scholar 

  11. Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. 9, 031023 (2019).

    Article  CAS  Google Scholar 

  12. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Cundiff, S. T. & Mukamel, S. Optical multidimensional coherent spectroscopy. Phys. Today 66, 44–49 (2013).

    Article  CAS  Google Scholar 

  15. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    Article  ADS  Google Scholar 

  16. Wang, F., Slivken, S., Wu, D. H., Lu, Q. Y. & Razeghi, M. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation. AIP Adv. 10, 055120 (2020).

    Article  ADS  CAS  Google Scholar 

  17. Schwarz, B. et al. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photonics 4, 1225–1231 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Täschler, P. et al. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photon. 15, 919–924 (2021).

    Article  ADS  Google Scholar 

  19. Columbo, L. et al. Unifying frequency combs in active and passive cavities: temporal solitons in externally driven ring lasers. Phys. Rev. Lett. 126, 173903 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. Lugiato, L. A., Oldano, C. & Narducci, L. M. Cooperative frequency locking and stationary spatial structures in lasers. J. Opt. Soc. Am. B 5, 879–888 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Piccardo, M. et al. Frequency combs induced by phase turbulence. Nature 582, 360–364 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Singleton, M., Jouy, P., Beck, M. & Faist, J. Evidence of linear chirp in mid-infrared quantum cascade lasers. Optica 5, 948–953 (2018).

    Article  ADS  CAS  Google Scholar 

  24. Opačak, N. & Schwarz, B. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity. Phys. Rev. Lett. 123, 243902 (2019).

    Article  ADS  PubMed  Google Scholar 

  25. Burghoff, D. Unraveling the origin of frequency modulated combs using active cavity mean-field theory. Optica 7, 1781–1787 (2020).

    Article  ADS  Google Scholar 

  26. Täschler, P. et al. Asynchronous upconversion sampling of frequency modulated combs. Laser Photonics Rev. 17, 2200590 (2023).

    Article  ADS  Google Scholar 

  27. Meng, B. et al. Dissipative Kerr solitons in semiconductor ring lasers. Nat. Photon. 16, 142–147 (2021).

    Article  ADS  Google Scholar 

  28. Opačak, N. et al. Nozaki–Bekki solitons in semiconductor lasers. Nature 625, 685–690 (2024).

    Article  ADS  PubMed  Google Scholar 

  29. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    Article  ADS  CAS  Google Scholar 

  30. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013).

    Article  ADS  Google Scholar 

  31. Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).

    Article  ADS  Google Scholar 

  32. Opačak, N., Cin, S. D., Hillbrand, J. & Schwarz, B. Frequency comb generation by Bloch gain induced giant Kerr nonlinearity. Phys. Rev. Lett. 127, 093902 (2021).

    Article  ADS  PubMed  Google Scholar 

  33. Opačak, N. et al. Spectrally resolved linewidth enhancement factor of a semiconductor frequency comb. Optica 8, 1227–1230 (2021).

    Article  ADS  Google Scholar 

  34. Khurgin, J. B. Nonlinear optics from the viewpoint of interaction time. Nat. Photon. 17, 545–551 (2023).

    Article  ADS  CAS  Google Scholar 

  35. Shimoda, K. Introduction to Laser Physics (Springer, 1986).

  36. Kazakov, D. et al. Active mid-infrared ring resonators. Nat. Commun. 15, 607 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article  ADS  PubMed  Google Scholar 

  38. Englebert, N., Mas Arabí, C., Parra-Rivas, P., Gorza, S.-P. & Leo, F. Temporal solitons in a coherently driven active resonator. Nat. Photon. 15, 536–541 (2021).

    Article  ADS  CAS  Google Scholar 

  39. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Brès, C. S. et al. Supercontinuum in integrated photonics: generation, applications, challenges, and perspectives. Nanophotonics 12, 1199–1244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Gaafar, M. A. et al. Femtosecond pulse amplification on a chip. Nat. Commun. 15, 8109 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heckelmann, I. et al. Quantum walk comb in a fast gain laser. Science 282, 434–438 (2023).

    Article  ADS  Google Scholar 

  47. Jung, S. et al. Homogeneous photonic integration of mid-infrared quantum cascade lasers with low-loss passive waveguides on an InP platform. Optica 6, 1023–1030 (2019).

    Article  ADS  CAS  Google Scholar 

  48. Wang, R. et al. Monolithic integration of mid-infrared quantum cascade lasers and frequency combs with passive waveguides. ACS Photonics 9, 426–431 (2022).

    Article  CAS  Google Scholar 

  49. Dely, H. et al. 10 Gbit s−1 free space data transmission at 9 μm wavelength with unipolar quantum optoelectronics. Laser Photonics Rev. 16, 2100414 (2022).

    Article  ADS  Google Scholar 

  50. Villares, G. et al. On-chip dual-comb based on quantum cascade laser frequency combs. Appl. Phys. Lett. 107, 251104 (2015).

    Article  ADS  Google Scholar 

  51. Prati, F. et al. Soliton dynamics of ring quantum cascade lasers with injected signal. Nanophotonics 10, 195–207 (2021).

    Article  Google Scholar 

  52. Cox, S. M. & Matthews, P. C. Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  53. Burghoff, D., Ren, D. & Han, Z. Sensitivity of SWIFT spectroscopy. Opt. Express 28, 6002–6017 (2020).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation under grant no. ECCS-2221715. T.P.L. thanks the Department of Defense (DoD) through the National Defense Science and Engineering Graduate (NDSEG) Fellowship programme. N.O. and B.S. are supported by the European Research Council (853014). D.K. and T.P.L. thank K. Yang and Y. Song (Harvard University) for enlightening discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.Pi. and D.K. conceived the project. D.K. designed the devices and M.Be., S.D.C. and B.S. fabricated them. D.K. and T.P.L. designed the experiments. D.K., T.P.L., N.O. and P.R. carried out measurements and analysed data. L.L.C., M.Br., F.P. and L.A.L. developed the theory of driven active resonators and carried out numerical simulations. D.K. and M.Pi. developed the interactive GLLE solver. M.Pu., D.C. and T.D. manufactured an external cavity tunable laser. All authors participated in the production of the manuscript. B.S., M.Pi. and F.C. supervised the project.

Corresponding authors

Correspondence to Dmitry Kazakov or Federico Capasso.

Ethics declarations

Competing interests

The authors declare the existence of a financial competing interest. The Office of Technology Development of Harvard University has begun the process of filing a patent application based on the materials of this work and is exploring commercialization opportunities for the presented technology.

Peer review

Peer review information

Nature thanks Konstantin Vodopyanov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, including Supplementary Figs. 1–27.

Peer Review File

Supplementary Data (exe)

Installer for GLLE solver (Win).

Supplementary Data (zip)

Installer for GLLE solver (Mac).

Supplementary Video 1

An experimental recording of the mid-infrared spectrum analyser screen showing multistable driven soliton states in a ring QC active resonator. Whereas all parameters are kept nominally constant, the driven resonator switches between several possible states, corresponding to one or several solitons circulating inside the cavity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, D., Letsou, T.P., Piccardo, M. et al. Driven bright solitons on a mid-infrared laser chip. Nature 641, 83–89 (2025). https://doi.org/10.1038/s41586-025-08853-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08853-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing