Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strategic atom replacement enables regiocontrol in pyrazole alkylation

Abstract

Pyrazoles are heterocycles commonly found as key substructures in agrochemicals and medicinally active compounds alike1,2. Despite their pervasiveness, established methods fall notably short in delivering complex pyrazoles selectively due to issues of differentiation during either assembly or N-functionalization3. This is a direct consequence of a dominant synthetic strategy that attempts to control selectivity-determining bonds between poorly differentiated starting materials. To overcome this longstanding challenge, we here describe a prototypical example of an alternative conceptual approach, ‘strategic atom replacement’, in which we synthesize N-alkyl pyrazoles from isothiazoles. The net forward transformation is a ‘swap’ of the isothiazole sulfur atom with a nitrogen atom and its associated alkyl fragment to deliver the alkylated pyrazole4,5. Linking the two azoles is an orphaned heterocycle class, 1,2,3-thiadiazine-S-oxides, whose synthetic potential has yet to be tapped6. By proceeding through these unusual heterocycles, the typical selectivity and separation challenges associated with exclusively bond-based pyrazole preparations are circumvented, and even minimally differentiated peripheral substituents can be discriminated to afford isomerically pure products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and concept.
Fig. 2: TDSO synthesis, alkylation and mechanism.
Fig. 3: Substrate scope for NH-TDSO alkylation.
Fig. 4: Selective synthesis of minimally differentiated N-alkyl pyrazoles and demonstration of further C–N bond-forming reactions.

Similar content being viewed by others

Data availability

All data are in the Supplementary Information. NMR data are provided in image and peaklist format; original NMR spectra files are available from the corresponding author (M.D.L.) upon request. Crystallographic data have been deposited to the CCDC (2394327, 2394342, 2394344, 2394373, 2394381 and 2394383).

References

  1. Li, G. et al. Pyrazole-containing pharmaceuticals: target, pharmacological activity, and their SAR studies. RSC Med. Chem. 13, 1300–1321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marshall, C. M., Federice, J. G., Bell, C. N., Cox, P. B. & Njardarson, J. T. An update on the nitrogen heterocycle compositions and properties of U.S. FDA-approved pharmaceuticals (2013–2023). J. Med. Chem. 67, 11622–11655 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levin, M. D. Retrosynthetic simplicity. Synlett 35, 1471–1474 (2023).

    Article  PubMed  Google Scholar 

  6. Kolberg, A., Sieler, J. & Schulze, B. Synthesis of oxidized 1,2,3-thiadiazines by hydroperoxy-induced ring enlargement of 2-benzenesulfonylaminoisothiazolium salts. J. Heterocycl. Chem. 36, 1081–1086 (1999).

    Article  CAS  Google Scholar 

  7. Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Corey, E. J. The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (Nobel Lecture). Angew. Chem. Int. Ed. 30, 455–465 (1991).

    Article  Google Scholar 

  9. Corey, E. J. & Cheng, X.-M. Logic of Chemical Synthesis (Wiley, 1995).

  10. Nicolaou, K. C. & Sorensen, E. J. Classics in Total Synthesis: Targets, Strategies, Methods (Wiley, 1996).

  11. Nogi, K. & Yorimitsu, H. Aromatic metamorphosis: conversion of an aromatic skeleton into a different ring system. Chem. Commun. 53, 4055–4065 (2017).

    Article  CAS  Google Scholar 

  12. Yorimitsu, H. Aromatic metamorphosis of thiophenes: replacing endocyclic sulfur with a different atom or group of atoms. Phosphorus Sulfur Silicon Relat. Elem. 198, 478–480 (2023).

  13. Pearson, T. J. et al. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science 381, 1474–1479 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Woo, J., Stein, C., Christian, A. H. & Levin, M. D. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 623, 77–82 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng, Q. et al. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat. Chem. 16, 741–748 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uhlenbruck, B. J. H., Josephitis, C. M., de Lescure, L., Paton, R. S. & McNally, A. A deconstruction–reconstruction strategy for pyrimidine diversification. Nature 631, 87–93 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boswell, B. R., Zhao, Z., Gonciarz, R. L. & Pandya, K. M. Regioselective pyridine to benzene edit inspired by water-displacement. J. Am. Chem. Soc. 146, 19660–19666 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, D. et al. Photocatalytic furan-to-pyrrole conversion. Science 386, 99–105 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Kanda, Y., Ishihara, Y., Wilde, N. C. & Baran, P. S. Two-phase total synthesis of taxanes: tactics and strategies. J. Org. Chem. 85, 10293–10320 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y.-A., Gu, X. & Wendlandt, A. E. A change from kinetic to thermodynamic control enables trans-selective stereochemical editing of vicinal diols. J. Am. Chem. Soc. 144, 599–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y.-A. et al. Stereochemical editing logic powered by the epimerization of unactivated tertiary stereocenters. Science 378, 383–390 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu, X. et al. Synthesis of non-canonical amino acids through dehydrogenative tailoring. Nature 634, 352–358 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Devasthale, P. & Wang, W. Azole amides and amines as alpha v integrin inhibitors. Patent WO 2018/089358 Al (2018).

  24. Yang, E. & Dalton, D. M. N1-Selective methylation of pyrazoles via α-halomethylsilanes as masked methylating reagents. J. Org. Chem. 89, 4221–4224 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Wright, S. W., Arnold, E. P. & Yang, X. Steric redirection of alkylation in 1H-pyrazole-3-carboxylate esters. Tetrahedron Lett. 59, 402–405 (2018).

    Article  CAS  Google Scholar 

  26. Bengel, L. L. et al. Engineered enzymes enable selective N-alkylation of pyrazoles with simple haloalkanes. Angew. Chem. Int. Ed. 60, 5554–5560 (2021).

    Article  CAS  Google Scholar 

  27. Desai, S. P., Zambri, M. T. & Taylor, M. S. Borinic acid catalyzed regioselective N-alkylation of azoles. J. Org. Chem. 87, 5385–5394 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, M. et al. Copper-catalyzed hydroamination: enantioselective addition of pyrazoles to cyclopropenes. J. Am. Chem. Soc. 145, 14573–14580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, S.-J., Bae, J.-Y. & Cho, C.-W. Phase-transfer-catalyzed asymmetric synthesis of chiral N-substituted pyrazoles by aza-Michael reaction. Eur. J. Org. Chem. 2015, 6495–6502 (2015).

    Article  CAS  Google Scholar 

  30. Knorr, L. Einwirkung von Acetessigester auf Phenylhydrazin. Ber. Dtsch. Chem. Ges. 16, 2597–2599 (1883).

    Article  Google Scholar 

  31. Aggarwal, R., Kumar, V., Kumar, R. & Singh, S. P. Approaches towards the synthesis of 5-aminopyrazoles. Beilstein J. Org. Chem. 7, 179–197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalton, D. M., Walroth, R. C., Rouget-Virbel, C., Mack, K. A. & Toste, F. D. Utopia point Bayesian optimization finds condition-dependent selectivity for N-methyl pyrazole condensation. J. Am. Chem. Soc. 146, 15779–15786 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaberdin, R. V. & Potkin, V. I. Isothiazoles (1,2-thiazoles): synthesis, properties and applications. Russ. Chem. Rev. 71, 673–694 (2002).

    Article  ADS  CAS  Google Scholar 

  34. Kletskov, A. V., Bumagin, N. A., Zubkov, F. I., Grudinin, D. G. & Potkin, V. I. Isothiazoles in the design and synthesis of biologically active substances and ligands for metal complexes. Synthesis 52, 159–188 (2019).

    Google Scholar 

  35. De Oliveira Silva, A., McQuade, J. & Szostak, M. Recent advances in the synthesis and reactivity of isothiazoles. Adv. Synth. Catal. 361, 3050–3067 (2019).

    Article  Google Scholar 

  36. Roure, B. et al. Photochemical permutation of thiazoles, isothiazoles and other azoles. Nature 637, 860–867 (2025).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, B.-B., Cao, W.-B., Wang, F., Wang, S.-Y. & Ji, S.-J. [4+1] Cycloaddition reaction of α,β-alkynic hydrazones and KSCN under transition-metal-free conditions: synthesis of N-iminoisothiazolium ylides. J. Org. Chem. 83, 11118–11124 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Loudon, J. D. in Organic Sulfur Compounds Vol. 1 (ed. Kharasch, N.) Ch. 26, 299–305 (Pergamon, 1961).

  39. Boyd, G. V. et al. in Science of Synthesis Vol. 11 (ed. Schaumann, E.) 507 (Thieme Verlag, 2002).

  40. Gasser, V. C. M., Makai, S. & Morandi, B. The advent of electrophilic hydroxylamine-derived reagents for the direct preparation of unprotected amines. Chem. Commun. 58, 9991–10003 (2022).

    Article  CAS  Google Scholar 

  41. Porcs-Makkay, M. et al. Alkylation of 2H-1,2,3-benzothiadiazine 1,1-dioxides. Formation of a new family of mesoionic compounds. Tetrahedron 70, 2169–2174 (2014).

    Article  CAS  Google Scholar 

  42. Joost, M. et al. Sulfur monoxide thermal release from an anthracene-based precursor, spectroscopic identification, and transfer reactivity. Proc. Natl Acad. Sci. USA 115, 5866–5871 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lynch, C. F., Downey, J. W., Zhang, Y., Hooker, J. M. & Levin, M. D. Core-labeling (radio) synthesis of phenols. Org. Lett. 25, 7230–7235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, A. et al. Regioselective synthesis, NMR, and crystallographic analysis of N1-substituted pyrazoles. J. Org. Chem. 82, 8864–8872 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Escolástico, C., Blanco, M., Claramunt, R. M., Sanz, D. & Elguero, J. Microwave synthesis of arylmethyl substituted pyrazoles. Open Org. Chem. J. 2, 10–16 (2008).

    Article  Google Scholar 

  46. Micetich, R. G. Lithiation of five-membered heteroaromatic compounds. The methyl substituted 1,2-azoles, oxadiazoles, and thiadiazoles. Can. J. Chem. 48, 2006–2015 (1970).

    Article  CAS  Google Scholar 

  47. Mosrin, M. & Knochel, P. TMPZnCl·LiCl: a new active selective base for the directed zincation of sensitive aromatics and heteroaromatics. Org. Lett. 11, 1837–1840 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Olofson, R. A., Landesberg, J. M., Houk, K. N. & Michelman, J. S. The deprotonation of thiazole and related bases. J. Am. Chem. Soc. 88, 4265–4266 (1966).

    Article  CAS  Google Scholar 

  49. Caton, M. P. L., Jones, D. H., Slack, R. & Wooldridge, K. R. H. 80. Isothiazoles. Part III. Reactions of isothiazol-5-yl-lithium compounds. J. Chem. Soc. https://doi.org/10.1039/JR9640000446 (1964).

  50. Ziegler, K. & Zeiser, H. Untersuchungen über alkaliorganische Verbindungen, VII. mitteil.: alkalimetallalkyle und pyridin (vorläufige mitteilung). Ber. Dtsch. Chem. Ges. B Ser. 63, 1847–1851 (1930).

    Article  Google Scholar 

  51. Wagen, C. & Wagen, A. Efficient and accurate pKa prediction enabled by pre-trained machine-learned interatomic potentials. Preprint at https://doi.org/10.26434/chemrxiv-2024-8489b (2024).

  52. Zabierek, A. A., Konrad, K. M. & Haidle, A. M. A practical, two-step synthesis of 1-alkyl-4-aminopyrazoles. Tetrahedron Lett. 49, 2996–2998 (2008).

    Article  CAS  Google Scholar 

  53. Mosallanejad, A. & Lorthioir, O. Application of Tsunoda reagent to the convenient synthesis of drug-like pyrazoles. Tetrahedron Lett. 59, 1708–1710 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research reported in this work was supported by the Packard Foundation, the Bristol Myers Squibb Unrestricted Research Grant, and by Johnson and Johnson Innovative Medicine. University of Chicago Research Computing Center is thanked for computational resources. L.C. was supported by a University of Chicago Quad Scholars Grant for summer research funding. A.J.B. thanks the NSF Graduate Research Fellowship Program (grant no. 2140001) for fellowship support. P.Q.K. thanks the Seymour Goodman fund for fellowship support. Enamine is thanked for a generous donation of chemicals and B. Egle (Johnson & Johnson) is thanked for conducting safety testing.

Author information

Authors and Affiliations

Authors

Contributions

A.F., Y.A., L.C. and C.B.K. designed and conducted experiments, and collected and analysed the data. P.Q.K. and A.J.B. conducted computations of the mechanism. P.Q.K and A.J.B. conducted crystallographic measurements and analyses. M.D.L. and A.F. conceived of the project and wrote the manuscript with input from all authors. M.D.L. and C.B.K. supervised the research.

Corresponding authors

Correspondence to Christopher B. Kelly or Mark D. Levin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–25, including Figs. 1–31 and Tables 1–9. See the Table of Contents for details.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanourakis, A., Ali, Y., Chen, L. et al. Strategic atom replacement enables regiocontrol in pyrazole alkylation. Nature 641, 646–652 (2025). https://doi.org/10.1038/s41586-025-08951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08951-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing