Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent bunching of anyons and dissociation in an interference experiment

Abstract

Aharonov–Bohm interference of fractional quasiparticles in the quantum Hall effect generally reveals their elementary charge (e*)1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. Recently, our interferometry experiments with several ‘particle states’ reported flux periods of ΔΦ = (e/e*)Φ0 (with Φ0 the flux quantum) at moderate temperatures16. Here we report interference measurements of ‘particle–hole conjugated’ states at filling factors ν = 2/3, 3/5 and 4/7, which revealed unexpected flux periodicities of ΔΦ = ν−1Φ0. The measured shot-noise Fano factor (F) of the partitioned quasiparticles in each of the quantum point contacts of the interferometer was F = ν (ref. 17) rather than that of the elementary charge F = e*/e (refs. 18,19). These observations indicate that the interference of bunched (clustered) elementary quasiparticles occurred for coherent pairs, triples and quadruplets, respectively. A small metallic gate (top gate), deposited in the centre of the interferometer bulk, formed an antidot (or a dot) when charged, thus introducing local quasiparticles at the perimeter of the (anti)dot. Surprisingly, such charging led to a dissociation of the ‘bunched quasiparticles’ and, thus, recovered the conventional flux periodicity set by the elementary charge of the quasiparticles. However, the shot-noise Fano factor (of each quantum point contact) consistently remained at F = ν, possibly due to the neutral modes accompanying the conjugated states. The two observations—bunching and debunching (or dissociation)—were not expected by current theories. Similar effects may arise in Jain’s ‘particle states’ (at lower temperatures) and at even denominator fractional quantum Hall states20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device structure of an OMZI.
Fig. 2: Shot noise measured in a single QPC of the OMZI.
Fig. 3: Evidence of coherent bunching of anyons in particle–hole conjugated states.
Fig. 4: Evidence of coherent dissociation of bunched anyons in particle–hole conjugated states.
Fig. 5: Evolution of the dissociated anyons on charging the top gate for νb = 2/3 and 3/5.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are publicly available at https://doi.org/10.5281/zenodo.15395283 (ref. 39). Source data are provided with this paper.

References 

  1. Zhang, Y. M. et al. Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Perot interferometers. Phys. Rev. B 79, 241304 (2009).

    Article  ADS  Google Scholar 

  2. Ofek, N. et al. Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl Acad. Sci. USA 107, 5276–5281 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ronen, Y. et al. Aharonov-Bohm effect in graphene-based Fabry-Pérot quantum Hall interferometers. Nat. Nanotechnol. 16, 563–569 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article  CAS  Google Scholar 

  5. Kim, J. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. 19, 1619–1626 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article  CAS  Google Scholar 

  7. Déprez, C. et al. A tunable Fabry-Pérot quantum Hall interferometer in graphene. Nat. Nanotechnol. 16, 555–562 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Samuelson, N. L. et al. Anyonic statistics and slow quasiparticle dynamics in a graphene fractional quantum Hall interferometer. Preprint at https://arxiv.org/abs/2403.19628 (2024).

  9. Werkmeister, T. et al. Anyon braiding and telegraph noise in a graphene interferometer. Science 388, 730–735 (2024).

  10. Chamon, C. D. C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article  ADS  Google Scholar 

  11. Willett, R. L. et al. Interference measurements of non-abelian e/4 & abelian e/2 quasiparticle braiding. Phys. Rev. 13, 011028 (2023).

    Article  CAS  Google Scholar 

  12. Yang, W. et al. Evidence for correlated electron pairs and triplets in quantum Hall interferometers. Nat. Commun. 15, 10064 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ji, Y. et al. An electronic Mach-Zehnder interferometer. Nature 422, 415–418 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96, 016804 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kundu, H. K., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article  CAS  Google Scholar 

  16. Ghosh, B. et al. Anyonic braiding in a chiral Mach–Zehnder interferometer. Nat. Phys. https://doi.org/10.1038/s41567-025-02960-3 (in the press).

  17. Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D. & Umansky, V. Melting of interference in the fractional quantum Hall effect: appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. de-Picciotto, R. et al. Direct observation of a fractional charge. Phys. B: Condens. Matter 249–251, 395–400 (1998).

    Article  ADS  Google Scholar 

  19. Reznikov, M., de Picciotto, R., Griffiths, T. G., Heiblum, M. & Umansky, V. Observation of quasiparticles with one-fifth of an electron’s charge. Nature 399, 238–241 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Chung, Y. C., Heiblum, M. & Umansky, V. Scattering of bunched fractionally charged quasiparticles. Phys. Rev. Lett. 91, 216804 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Schuster, R. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 385, 417–420 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. dePicciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Simmons, J. A. et al. Resistance fluctuations in the integral-quantum-Hall-effect and fractional-quantum-Hall-effect regimes. Phys. Rev. B 44, 12933–12944 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Lee, J.-Y. M. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Glidic, P. et al. Cross-correlation investigation of anyon statistics in the ν = 1/3 and 2/5 fractional quantum Hall states. Phys. Rev. 13, 011030 (2023).

    Article  CAS  Google Scholar 

  28. Ruelle, M. et al. Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. 13, 011031 (2023).

    Article  CAS  Google Scholar 

  29. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  30. Biswas, S. et al. Shot noise does not always provide the quasiparticle charge. Nat. Phys. 18, 1476–1481 (2022).

  31. Deviatov, E. V., Egorov, S. V., Biasiol, G. & Sorba, L. Quantum Hall Mach-Zehnder interferometer at fractional filling factors. Europhys. Lett. 100, 67009 (2012).

    Article  ADS  CAS  Google Scholar 

  32. Batra, N., Wei, Z., Vishveshwara, S. & Feldman, D. E. Anyonic Mach-Zehnder interferometer on a single edge of a two-dimensional electron gas. Phys. Rev. B 108, L241302 (2023).

    Article  ADS  CAS  Google Scholar 

  33. Bid, A., Ofek, N., Heiblum, M., Umansky, V. & Mahalu, D. Shot noise and charge at the 2/3 composite fractional quantum Hall state. Phys. Rev. Lett. 103, 236802 (2009).

    Article  ADS  PubMed  Google Scholar 

  34. Biswas, S., Kundu, H. K., Umansky, V. & Heiblum, M. Electron pairing of interfering interface-based edge modes. Phys. Rev. Lett. 131, 096302 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Choi, H. K. et al. Robust electron pairing in the integer quantum Hall effect regime. Nat. Commun. 6, 7435 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Frigeri, G. A., Scherer, D. D. & Rosenow, B. Sub-periods and apparent pairing in integer quantum Hall interferometers. Europhys. Lett. 126, 67007 (2019).

    Article  CAS  Google Scholar 

  37. Kim, J. et al. Aharonov-Bohm interference in even-denominator fractional quantum Hall states. Preprint at https://arxiv.org/abs/2412.19886 (2024).

  38. Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  39. Ghosh, B. Coherent bunching of anyons and their dissociation in interference experiments. Zenodo https://doi.org/10.5281/zenodo.15395283 (2025).

Download references

Acknowledgements

M.H. thanks Y. Ronen for fruitful discussions. D.F.M. acknowledges many illuminating conversations on quantum Hall interferometry with Y. Ronen. B.G. thanks A. K. Paul for his helpful comment that improved the device. M.L. thanks the Ariane de Rothschild Women Doctoral Program for their support. D.F.M. acknowledges the support of the Israel Science Foundation (Grant No. 2572/21) and the Deutsche Forschungsgemeinschaft (DFG) within the CRC network TR 183 (Project Grant No. 277101999). M.H. acknowledges the support of the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 833078) and the support of the Israel Science Foundation (Grant No. 1510/22).

Author information

Authors and Affiliations

Authors

Contributions

B.G. fabricated the devices. B.G. and M.L. performed the measurements and analysed the data with the input from M.H. M.H. supervised the design, execution and data analysis in the experiment. D.F.M. worked on the theoretical aspects and data analysis. V.U. grew the GaAs heterostructures. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Moty Heiblum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, methods, Figs. 1–11 and references.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Labendik, M., Umansky, V. et al. Coherent bunching of anyons and dissociation in an interference experiment. Nature 642, 922–927 (2025). https://doi.org/10.1038/s41586-025-09143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09143-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing