Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereodivergent transformation of a natural polyester to enantiopure PHAs

Abstract

Natural chiral polymers, such as DNA, proteins, cellulose and poly[(R)-3-hydroxybutyrate] ((R)-P3HB), are prevalent in their enantiopure forms1,2. Existing methods to synthesize enantiopure polymers focus on enantiospecific polymerization, in which only one specific enantiomer is obtained from the corresponding chiral monomer3,4,5,6. Here we introduce a catalytic stereodivergent synthetic strategy to access all enantiopure di-isotactic poly(3-hydroxyalkanoate) (PHA) diastereomers from bacterial (R)-P3HB as the single chiral source. A series of enantiopure (R,R)-α-alkylated-β-butyrolactones are obtained from (R)-P3HB and then subjected to the catalyst-controlled diastereodivergent ring-opening polymerization (ROP) to enantiopure di-isotactic α-alkylated PHAs. Metal-catalysed coordination–insertion ROP results in threo-(R,R)-di-isotactic PHAs with chiral retention, whereas anionic ROP catalysed by an organic superbase produces erythro-(R,S)-di-isotactic PHAs with chiral inversion, achieving precision di-isotactic PHAs with exclusive regio- and stereoregularity. This strategy has also enabled the stereodivergent synthesis of all four [(R,R), (S,S), (R,S) and (S,R)] stereoisomers of α,α-dialkylated PHAs from (R)-P3HB, which can be depolymerized to chiral α,α-dialkylated-β-butyrolactones with high stereoselectivity. Overall, this catalyst-controlled regio- and stereoselective, stereodivergent synthetic methodology provides access to 16 enantiopure stereoisomers of α(α)-(di)substituted PHAs and enables the stereochemistry-defined structure–property relationship study of the di-isotactic PHAs, providing insights into the effects of main-chain stereoconfigurations and alkyl side chains on their thermal properties, melt processability, mechanical performance and supramolecular stereocomplexation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic stereodivergent polymerization for enantiopure di-isotactic PHAs.
Fig. 2: Determining stereoregularity and stereoconfiguration of di-isotactic PHAs.
Fig. 3: Thermal, mechanical and rheological properties of enantiopure di-isotactic PHAs.
Fig. 4: Stereocomplexation behaviour and chiroptical activities of enantiomeric di-isotactic PHAs.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the Article and its Supplementary Information.

References

  1. Vishakha, S. K., Kishor, D. B. & Sudha, S. R. Natural polymers–a comprehensive review. Int. J. Res. Pharm. Biomed. Sci. 3, 1597–1613 (2012).

    Google Scholar 

  2. Muhammadi, Shabina, Afzal, M. & Hameed, S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem. Lett. Rev. 8, 56–77 (2015).

    Article  Google Scholar 

  3. Tutoni, G. G. et al. Microfluidic assembly of degradable, stereocomplexed hydrogel Microparticles. J. Am. Chem. Soc. 146, 14705–14714 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Popowski, Y., Lu, Y., Coates, G. W. & Tolman, W. B. Stereocomplexation of stereoregular aliphatic polyesters: change from amorphous to semicrystalline polymers with single stereocenter inversion. J. Am. Chem. Soc. 144, 8362–8370 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Auriemma, F. et al. Stereocomplexed poly(limonene carbonate): a unique example of the cocrystallization of amorphous enantiomeric polymers. Angew. Chem. Int. Ed. 54, 1215–1218 (2015).

    Article  CAS  Google Scholar 

  6. Hori, Y., Suzuki, M., Yamaguchi, A. & Nishishita, T. Ring-opening polymerization of optically active β-butyrolactone using distannoxane catalysts: synthesis of high-molecular-weight poly(3-hydroxybutyrate). Macromolecules 26, 5533–5534 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Zheng, Y. & Pan, P. Crystallization of biodegradable and biobased polyesters: polymorphism, cocrystallization, and structure-property relationship. Prog. Polym. Sci. 109, 101291 (2020).

    Article  CAS  Google Scholar 

  8. Worch, J. C. et al. Stereochemical enhancement of polymer properties. Nat. Rev. Chem. 3, 514–535 (2019).

    Article  CAS  Google Scholar 

  9. García, F., Gómez, R. & Sánchez, L. Chiral supramolecular polymers. Chem. Soc. Rev. 52, 7524–7548 (2023).

    Article  PubMed  Google Scholar 

  10. Shen, J. & Okamoto, Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev. 116, 1094–1138 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Kakuchi, T. & Sakai, R. in Encyclopedia Polymer Science Technology Vol. 3, 1–32 (Wiley, 2014).

  12. Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Westlie, A. H., Quinn, E. C., Parker, C. R. & Chen, E. Y.-X. Synthetic biodegradable polyhydroxyalkanoates (PHAs): recent advances and future challenges. Prog. Polym. Sci. 134, 101608 (2022).

    Article  CAS  Google Scholar 

  14. Anjum, A. et al. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89, 161–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Sudesh, K., Abe, H. & Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000).

    Article  CAS  Google Scholar 

  16. Shoda, S. I., Uyama, H., Kadokawa, J. I., Kimura, S. & Kobayashi, S. Enzymes as green catalysts for precision macromolecular synthesis. Chem. Rev. 116, 2307–2413 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi, S. & Makino, A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem. Rev. 109, 5288–5353 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, G. et al. Asymmetric kinetic resolution polymerization. Coord. Chem. Rev. 414, 213296 (2020).

    Article  CAS  Google Scholar 

  19. Young, M. S., LaPointe, A. M., MacMillan, S. N. & Coates, G. W. Highly enantioselective polymerization of β-butyrolactone by a bimetallic magnesium catalyst: an interdependent relationship between favored and unfavored enantiomers. J. Am. Chem. Soc. 146, 18032–18040 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, H.-Y. et al. Spiro-salen catalysts enable the chemical synthesis of stereoregular polyhydroxyalkanoates. Nat. Catal. 6, 720–728 (2023).

    Article  CAS  Google Scholar 

  21. Beletskaya, I. P., Najera, C. & Yus, M. Stereodivergent catalysis. Chem. Rev. 118, 5080–5200 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Krautwald, S. & Carreira, E. M. Stereodivergence in asymmetric catalysis. J. Am. Chem. Soc. 139, 5627–5639 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Quinn, E. C. et al. Installing controlled stereo-defects yields semicrystalline and biodegradable poly(3-hydroxybutyrate) with high toughness and optical clarity. J. Am. Chem. Soc. 145, 5795–5802 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Bruckmoser, J., Pongratz, S., Stieglitz, L. & Rieger, B. Highly isoselective ring-opening polymerization of rac-β-butyrolactone: access to synthetic poly(3-hydroxybutyrate) with polyolefin-like material properties. J. Am. Chem. Soc. 145, 11494–11498 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, X. et al. Biodegradable polyhydroxyalkanoates by stereoselective copolymerization of racemic diolides: stereocontrol and polyolefin-like properties. Angew. Chem. Int. Ed. 59, 7881–7890 (2020).

    Article  CAS  Google Scholar 

  26. Grassie, N., Murray, E. J. & Holmes, P. A. The thermal degradation of poly(-(D)-β-hydroxybutyric acid): part 3—the reaction mechanism. Polym. Degrad. Stab. 6, 127–134 (1984).

    Article  CAS  Google Scholar 

  27. Morikawa, H. & Marchessault, R. H. Pyrolysis of bacterial polyalkanoates. Can. J. Chem. 59, 2306–2313 (1981).

    Article  CAS  Google Scholar 

  28. Zhou, L. et al. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates. Science 380, 64–69 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Zhou, Z., LaPointe, A. M., Shaffer, T. D. & Coates, G. W. Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks. Nat. Chem. 15, 856–861 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, Z., LaPointe, A. M. & Coates, G. W. Atactic, isotactic, and syndiotactic methylated polyhydroxybutyrates: an unexpected series of isomorphic polymers. J. Am. Chem. Soc. 145, 25983–25988 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, J.-C., Yang, J., Li, W.-B., Lu, X.-B. & Liu, Y. Carbonylative polymerization of epoxides mediated by tri-metallic complexes: a dual catalysis strategy for synthesis of biodegradable polyhydroxyalkanoates. Angew. Chem. Int. Ed. 61, e202116208 (2022).

    Article  ADS  CAS  Google Scholar 

  32. Furutate, S. et al. Superior thermal stability and fast crystallization behavior of a novel, biodegradable α-methylated bacterial polyester. npg Asia Mater. 13, 31 (2021).

    Article  ADS  CAS  Google Scholar 

  33. Tanahashi, N. & Doi, Y. Thermal properties and stereoregularity of poly(3-hydroxybutyrate) prepared from optically active β-butyrolactone with a zinc-based catalyst. Macromolecules 24, 5732–5733 (1991).

    Article  ADS  CAS  Google Scholar 

  34. Zhang, Y., Gross, R. A. & Lenz, R. W. Stereochemistry of the ring-opening polymerization of (S)-β-butyrolactone. Macromolecules 23, 3206–3212 (1990).

    Article  ADS  CAS  Google Scholar 

  35. Rieth, L. R., Moore, D. R., Lobkovsky, E. B. & Coates, G. W. Single-site β-diiminate zinc catalysts for the ring-opening polymerization of β-butyrolactone and β-valerolactone to poly(3-hydroxyalkanoates). J. Am. Chem. Soc. 124, 15239–15248 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Shakaroun, R. M., Jéhan, P., Alaaeddine, A., Carpentier, J. F. & Guillaume, S. M. Organocatalyzed ring-opening polymerization (ROP) of functional β-lactones: new insights into the ROP mechanism and poly(hydroxyalkanoate)s (PHAs) macromolecular structure. Polym. Chem. 11, 2640–2652 (2020).

    Article  CAS  Google Scholar 

  37. Jedlinski, Z. et al. Stereochemical control in the anionic polymerization of β-butyrolactone initiated with alkali-metal alkoxides. Macromolecules 29, 3773–3777 (1996).

    Article  ADS  CAS  Google Scholar 

  38. Kurcok, P., Kowalczuk, M., Hennek, K. & Jedlinski, Z. Anionic polymerization of β-lactones initiated with alkali-metal alkoxides: reinvestigation of the polymerization mechanism. Macromolecules 25, 2017–2020 (1992).

    Article  ADS  CAS  Google Scholar 

  39. Li, Z., Zhao, D., Shen, Y. & Li, Z. Ring-opening polymerization of enantiopure bicyclic ether-ester monomers toward closed-loop recyclable and crystalline stereoregular polyesters via chemical upcycling of bioplastic. Angew. Chem. Int. Ed. 62, e202302101 (2023).

    Article  CAS  Google Scholar 

  40. Amgoune, A., Thomas, C. M., Ilinca, S., Roisnel, T. & Carpentier, J. Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic β‐butyrolactone. Angew. Chem. Int. Ed. 45, 2782–2784 (2006).

    Article  CAS  Google Scholar 

  41. De Winter, J., Coulembier, O., Gerbaux, P. & Dubois, P. High molecular weight poly(α,α′,β-trisubstituted β-lactones) as generated by metal-free phosphazene catalysts. Macromolecules 43, 10291–10296 (2010).

    Article  Google Scholar 

  42. Fráter, G., Müller, U. & Günther, W. The stereoselective α-alkylation of chiral β-hydroxy esters and some applications thereof. Tetrahedron 40, 1269–1277 (1984).

    Article  Google Scholar 

  43. Tutoni, G. & Becker, M. L. Underexplored stereocomplex polymeric scaffolds with improved thermal and mechanical properties. Macromolecules 53, 10303–10314 (2020).

    Article  ADS  CAS  Google Scholar 

  44. Im, S. H. et al. Stereocomplex polylactide for drug delivery and biomedical applications: a review. Molecules 26, 2846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang, X. & Chen, E. Y.-X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 9, 2345 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Amgoune, A., Thomas, C. M., Roisnel, T. & Carpentier, J.-F. Ring‐opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy‐amino‐bisphenolate ligands: combining high activity, productivity, and selectivity. Chem. Eur. J. 12, 169–179 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work by J.-J.T., R.L., J.N. and E.Y.-X.C. was supported in part by RePLACE (Redesigning Polymers to Leverage a Circular Economy), funded by the Office of Science of the US Department of Energy (award no. DE-SC0022290). The work by E.C.Q., E.R.C., Z.Z., L.Z., R.R.G. and E.Y.-X.C. was supported in part by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office (AMMTO) and Bioenergy Technologies Office (BETO), performed as part of the BOTTLE Consortium, which includes members from Colorado State University and funded under contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy. We thank J. Boes of the Kennan group for assistance in CD measurements.

Author information

Authors and Affiliations

Authors

Contributions

E.Y.-X.C. conceived the project, acquired the funding and directed the research. J.-J.T. and R.L. led the experimental design and study. J.-J.T., R.L., E.C.Q., J.N., E.R.C., Z.Z., L.Z. and R.R.G. designed and conducted experiments as well as acquired, analysed and interpreted data or results. J.-J.T. and R.L. wrote the original draft and revised the subsequent manuscript versions. E.Y.-X.C. edited the initial and subsequent versions of the paper. All authors have reviewed and approved the paper.

Corresponding author

Correspondence to Eugene Y.-X. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yohei Ogiwara, Rong Tong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The structures of 22 enantiopure diisotactic PHAs synthesized and investigated in this study.

Sixteen enantiopure diisotactic PHAs were derived from (R)-P3HB and six enantiopure diisotactic PHAs were derived from ethyl-(S)-3-hydroxybutanoate.

Extended Data Fig. 2 Synthesis and absolute stereoconfiguration determination of (R)- and (S)-[P3H(Me)2B].

a, Catalytic stereodivergent polymerization of (R)-[(Me)2BL] leads to enantiopure (R)- and (S)-[P3H(Me)2B], and their hydrolysis gives the corresponding enantiopure (R)- and (S)-hydroxyacids. b, Comparative 13C NMR spectra (CDCl3) of atactic P3H(Me)2B and enantiopure (R)- and (S)-[P3H(Me)2B].

Extended Data Fig. 3 Chemical recycling of enantiopure P3H(Me)2B to chiral lactones.

a, Catalytic stereodivergent polymerization of virgin (R)-(Me)2BL and NaOH-catalyzed depolymerization of enantiopure P3H(Me)2B. b, Comparative crude 1H NMR spectra (CDCl3) of virgin (R)-(Me)2BL, recycled (S)-(Me)2BL, and recycled (R)-(Me)2BL.

Extended Data Fig. 4 Chemical recycling of diastereomeric P(M5) to chiral lactones.

a, Catalytic stereodivergent polymerization of virgin (R,R)-M5 and chemical recycling of (R,R)-P(M5) and (R,S)-P(M5). b, Catalytic stereodivergent polymerization of virgin (S,R)-M5 and chemical recycling of (S,R)-P(M5) and (S,S)-P(M5). c, Comparative crude 1H NMR spectra (CDCl3) of virgin (R,R)-M5, recycled (R,S)-M5 and recycled (R,R)-M5. d, Comparative crude 1H NMR spectra (CDCl3) of virgin (S,R)-M5, recycled (S,S)-M5 and recycled (S,R)-M5.

Extended Data Fig. 5 Stereocomplexation behavior of enantiomeric P(M2).

a, DSC second heating scans (10 °C/min) for (R,R)-P(M2), (S,S)-P(M2), and their 1:1 physical blend. b, DSC second heating scans (10 °C/min) for (R,S)-P(M2), (S,R)-P(M2), and stereocomplex, sc-PHEBRS/SR. c, DSC first cooling scans (10 °C/min) for (R,S)-P(M2), (S,R)-P(M2), and sc-PHEBRS/SR. d, Stacked WAXS profiles of (R,S)-P(M2), (S,R)-P(M2), and sc-PHEBRS/SR.

Extended Data Fig. 6 Stacked DSC crystallization thermograms of P(M3) enantiomers and their stereocomplexes.

a, DSC first cooling scans (10 °C/min) for (R,R)-P(M3), (S,S)-P(M3), and sc-PHPBRR/SS. b, DSC first cooling scans (10 °C/min) for (R,S)-P(M3), (S,R)-P(M3), and sc-PHPBRS/SR.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figs. 1–122, Supplementary Tables 1–12 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, JJ., Li, R., Quinn, E.C. et al. Stereodivergent transformation of a natural polyester to enantiopure PHAs. Nature 643, 967–974 (2025). https://doi.org/10.1038/s41586-025-09220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09220-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing