Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A diverse and distinct microbiome inside living trees

Abstract

Despite significant advances in microbiome research across various environments1, the microbiome of Earth’s largest biomass reservoir—the wood of living trees2—remains largely unexplored. Here, we illuminate the microbiome inhabiting and adapted to wood and further specialized to individual host tree species, revealing that wood is a harbour of biodiversity and potential key players in tree health and forest ecosystem functions. We demonstrate that a single tree hosts approximately one trillion bacteria in its woody tissues, with microbial communities distinctly partitioned between heartwood and sapwood, each maintaining unique microbiomes with minimal similarity to other plant tissues or ecosystem components. The heartwood microbiome emerges as a particularly unique ecological niche, distinguished by specialized archaea and anaerobic bacteria driving consequential biogeochemical processes. Our findings support the concept of plants as ‘holobionts’3,4—integrated ecological units of host and associated microorganisms—with implications for tree health, disease and functionality. By characterizing the composition, structure and functions of tree internal microbiomes, our work opens up pathways for understanding tree physiology and forest ecology and establishes a new frontier in environmental microbiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacterial and archaeal community structure and metabolism in wood microbiome.
Fig. 2: Fungal community structure and metabolism in wood microbiome.
Fig. 3: Microbial abundance, metabolism and gas production in heartwood and sapwood.
Fig. 4: Black oak prokaryotic microbiome composition and source tracking across plant tissues.
Fig. 5: Black oak fungal microbiome composition and source tracking across plant tissues.

Similar content being viewed by others

Data availability

The data that support the findings of this study are publicly accessible from the NCBI database under accession number PRJNA1124946.

Code availability

All code used in this analysis, along with all necessary files, are available on GitHub at https://github.com/jgewirtzman/tree-microbiome.git.

References

  1. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).

    Article  PubMed  Google Scholar 

  4. Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Falster, D. S. et al. BAAD: a Biomass And Allometry Database for woody plants. Ecology 96, 1445–1445 (2015).

    Article  Google Scholar 

  7. Andrews, J. H. & Harris, R. F. The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol. 38, 145–180 (2000).

    Article  PubMed  Google Scholar 

  8. de Habiyaremye, J. D., Goldmann, K., Reitz, T., Herrmann, S. & Buscot, F. Tree root zone microbiome: exploring the magnitude of environmental conditions and host tree impact. Front. Microbiol. 11, 749 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sohrabi, R., Paasch, B. C., Liber, J. A. & He, S. Y. Phyllosphere microbiome. Annu. Rev. Plant Biol. 74, 539–568 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Jeffrey, L. C. et al. Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nat. Commun. 12, 2127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baldrian, P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).

    CAS  PubMed  Google Scholar 

  12. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yip, D. Z., Veach, A. M., Yang, Z. K., Cregger, M. A. & Schadt, C. W. Methanogenic Archaea dominate mature heartwood habitats of Eastern Cottonwood (Populus deltoides). New Phytol. 222, 115–121 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Santoyo, G., Moreno-Hagelsieb, G., del Orozco-Mosqueda, M. C. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Yadeta, K. A. & J Thomma, B. P. H. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4, 97 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arnold, W. et al. A method for sampling the living wood microbiome. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.14311 (2024).

    Article  Google Scholar 

  19. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johnston, S. R., Boddy, L. & Weightman, A. J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. Ecol. 92, fiw179 (2016).

    Article  PubMed  Google Scholar 

  21. Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Morris, H., Brodersen, C., Schwarze, F. W. M. R. & Jansen, S. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci. 7, 1665 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muhr, J. et al. How fresh is maple syrup? Sugar maple trees mobilize carbon stored several years previously during early springtime sap-ascent. New Phytol. 209, 1410–1416 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Telichowska, A. et al. Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: electrochemical and spectrophotometric approach and their antimicrobial properties. Open Chem. 18, 1125–1135 (2020).

    Article  CAS  Google Scholar 

  25. Hofmann, T. et al. Antioxidant and antibacterial properties of Norway Spruce (Picea abies H. Karst.) and Eastern Hemlock (Tsuga canadensis (L.) Carrière) cone extracts. Forests 12, 1189 (2021).

    Article  Google Scholar 

  26. Hardoim Pablo, R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song, Z., Kennedy, P. G., Liew, F. J. & Schilling, J. S. Fungal endophytes as priority colonizers initiating wood decomposition. Funct. Ecol. 31, 407–418 (2017).

    Article  Google Scholar 

  28. Lee, J. W. et al. Taxonomic study of the genus Pholiota (Strophariaceae, Basidiomycota) in Korea. Mycobiology 48, 476–483 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lodge, D. J. et al. Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Divers. 64, 1–99 (2014).

    Article  Google Scholar 

  30. Dahlman, M., Danell, E. & Spatafora, J. W. Molecular systematics of Craterellus: cladistic analysis of nuclear LSU rDNA sequence data. Mycol. Res. 104, 388–394 (2000).

    Article  CAS  Google Scholar 

  31. Saikkonen, K., Faeth, S. H., Helander, M. & Sullivan, T. J. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 29, 319–343 (1998).

    Article  Google Scholar 

  32. Rodriguez, R. J., White, J. F. Jr, Arnold, A. E. & Redman, R. S. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Boddy, L. & Griffith, G. Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41, 41–73(2011).

  34. Shortle, W. C., Menge, J. A. & Cowling, E. B. Interaction of bacteria, decay fungi, and live sapwood in discoloration and decay of trees. Eur. J. Forest Pathol. 8, 293–300 (1978).

    Article  Google Scholar 

  35. Shigo, A. L. & Hillis, W. E. Heartwood, discolored wood, and microorganisms in living trees. Annu. Rev. Phytopathol. 11, 197–222 (1973).

    Article  Google Scholar 

  36. Jensen, K. F. Measuring Oxygen and Carbon Dioxide in Red Oak Trees U.S. Forest Service Research Note NE-74 (U.S. Department of Agriculture, 1967).

  37. Hoppe, B. et al. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci. Rep. 5, 9456 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Covey, K. R. et al. Greenhouse trace gases in deadwood. Biogeochemistry 130, 215–226 (2016).

    Article  CAS  Google Scholar 

  39. Estrada-De Los Santos, P., Bustillos-Cristales, R. & Caballero-Mellado, J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67, 2790–2798 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jo, Y. et al. Changes in microbial community structure in response to gummosis in peach tree bark. Plants 11, 2834 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Phuengjayaem, S. et al. Sporolactobacillus mangiferae sp. nov., a spore-forming lactic acid bacterium isolated from tree bark in Thailand. Int. J. Syst. Evol. Microbiol. 73, e005993 (2023).

  42. Timmusk, S., Grantcharova, N. & Wagner, E. G. H. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol. 71, 7292–7300 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tláskal, V., Zrůstová, P., Vrška, T. & Baldrian, P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 93, fix157 (2017).

  44. Madhaiyan, M. et al. Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L. Int. J. Syst. Evol. Microbiol. 63, 1241–1248 (2013).

    Article  PubMed  Google Scholar 

  45. Lorentzen, M. P. G. & Lucas, P. M. Distribution of Oenococcus oeni populations in natural habitats. Appl. Microbiol. Biotechnol. 103, 2937–2945 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang, Q., Puri, A., Padda, K. P. & Chanway, C. P. Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophytic diazotroph Paenibacillus polymyxa and its GFP-tagged derivative. Botany 95, 611–619 (2017).

    Article  CAS  Google Scholar 

  47. Putkinen, A. et al. New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing. New Phytol. 231, 524–536 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Taylor, F. H. Variation in sugar content of maple sap. Vermont Agricultural Experiment Station Bulletin 587, 3–39 (1956).

  49. Argiroff, W. A. et al. Seasonality and longer-term development generate temporal dynamics in the Populus microbiome. mSystems 9, e0088623 (2024).

    Article  PubMed  Google Scholar 

  50. Frank, A. C., Saldierna Guzmán, J. P. & Shay, J. E. Transmission of bacterial endophytes. Microorganisms 5, 70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Abdelfattah, A., Tack, A. J. M., Lobato, C., Wassermann, B. & Berg, G. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. 31, 346–355 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Barka, E. A. et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016).

    Article  PubMed  Google Scholar 

  53. Zeikus, J. G. & Ward, J. C. Methane formation in living trees: a microbial origin. Science 184, 1181–1183 (1974).

    Article  CAS  PubMed  Google Scholar 

  54. Schink, B. & Ward, J. C. Microaerobic and anaerobic bacterial activities involved in formation of wetwood and discoloured wood. IAWA J. 5, 105–109 (1984).

    Article  Google Scholar 

  55. Hoch, G., Richter, A. & Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 26, 1067–1081 (2003).

    Article  CAS  Google Scholar 

  56. Spicer, R. & Holbrook, N. M. Within‐stem oxygen concentration and sap flow in four temperate tree species: does long‐lived xylem parenchyma experience hypoxia? Plant Cell Environ. 28, 192–201 (2005).

    Article  Google Scholar 

  57. Haridas, S. et al. 101 Dothideomycetes genomes: a test case for predicting lifestyles and emergence of pathogens. Stud. Mycol. 96, 141–153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moll, J. et al. Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environ. Microbiol. 20, 3744–3756 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Rintala, E. et al. Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS 15, 461–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pareek, M., Allaway, W. G. & Ashford, A. E. Armillaria luteobubalina mycelium develops air pores that conduct oxygen to rhizomorph clusters. Mycol. Res. 110, 38–50 (2006).

    Article  PubMed  Google Scholar 

  61. Carroll, G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69, 2–9 (1988).

    Article  Google Scholar 

  62. Promputtha, I. et al. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb. Ecol. 53, 579–590 (2007).

    Article  PubMed  Google Scholar 

  63. Siegenthaler, A. et al. Temperate tree microbiomes: divergent soil and phyllosphere microbial communities share few but dominant taxa. Plant Soil 496, 319–340 (2024).

    Article  CAS  Google Scholar 

  64. Pearce, R. B. Antimicrobial defences in the wood of living trees. New Phytol. 132, 203–233 (1996).

    Article  CAS  Google Scholar 

  65. Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. & Dowling, D. N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio 6, e02527–14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lengrand, S., Pesenti, L., Bragard, C. & Legrève, A. Bacterial endophytome sources, profile and dynamics—a conceptual framework. Front. Sustain. Food Syst. 8, e1378436 (2024).

  68. De La Fuente, L., Merfa, M. V., Cobine, P. A. & Coleman, J. J. Pathogen adaptation to the xylem environment. Annu. Rev. Phytopathol. 60, 163–186 (2022).

    Article  PubMed  Google Scholar 

  69. Oses, R., Valenzuela, S., Freer, J., Sanfuentes, E. & Rodriguez, J. Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Divers. 33, 77–86 (2008).

    Google Scholar 

  70. Pfautsch, S. Hydraulic anatomy and function of trees—basics and critical developments. Curr. For. Rep. 2, 236–248 (2016).

    Article  Google Scholar 

  71. Carluccio, G. et al. Xylem embolism and pathogens: can the vessel anatomy of woody plants contribute to X. fastidiosa resistance? Pathogens 12, 825 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gora, E. M., Lucas, J. M. & Yanoviak, S. P. Microbial composition and wood decomposition rates vary with microclimate from the ground to the canopy in a tropical forest. Ecosystems 22, 1206–1219 (2019).

    Article  CAS  Google Scholar 

  73. Harrison, J. G. & Griffin, E. A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ. Microbiol. 22, 2107–2123 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Westveld, M. Natural forest vegetation zones of New England. J. For. 54, 332–338 (1956).

    Google Scholar 

  75. Ashton, M. S., Duguid, M. C., Barrett, A. L. & Covey, K. in Forest Plans of North America (eds Siry, J. P. et al.) Ch. 29 (Academic, 2015).

  76. Weber, N. et al. Nephele: a cloud platform for simplified, standardized and reproducible microbiome data analysis. Bioinformatics 34, 1411–1413 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, C., Cui, Y., Li, X. & Yao, M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Shenhav, L. et al. FEAST: fast expectation-maximization for microbial source tracking. Nat. Methods 16, 627–632 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Article  Google Scholar 

  85. Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. R package version 4.1.0 https://docs.ropensci.org/rnaturalearth/ (2024).

  86. Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 36, 454–489 (2017).

    Article  Google Scholar 

  87. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article  Google Scholar 

  88. Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. Gigascience 8, giz107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article  Google Scholar 

  91. Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  92. Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  93. Oksanen, J. et al. vegan: community ecology package. R package version 2.7-1 (2020).

  94. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. A., T. & Abdul, F. in Cellulose – Fundamental Aspects (ed. Van De Ven, T. G. M.) Ch. 5 (InTech, 2013).

  96. Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Spicer, J. Orefice, M. Valido, T. Harris, M. Ashton, B. Girgenti, L. Logozzo, T. Maavara, J. Rosentreter, L. Welker, A. Polussa, M. Birkey, M. Hlavka, E. Jose, C. Ledezma, A. Gewirtzman and C. Thibodeau for their help in the field. We also thank C. Butler, A. Rubenstein, M. Furze, D. Angel, J. Karosas, T. Kolodkin and E. Ward for assistance in the laboratory. We acknowledge the University of Minnesota Genomics Center for its technical assistance. Thank you to members of the Bradford Lab for feedback on earlier drafts of this manuscript, and to the Yale Forests faculty, staff and facilities for enabling the research. Illustrations in Figs. 4a and 5a were created using BioRender (https://biorender.com). Funding for this research was provided by the National Science Foundation Graduate Research Fellowship Program (NSF-GRFP), the Yale Institute for Biospheric Studies (YIBS) and the Kohlberg-Donohoe Research Fellowship to J.G.; the National Defense Science and Engineering Graduate (NDSEG) Fellowship to W.A.; and additional support from the Yale Center for Natural Carbon Capture and the Yale Planetary Solutions Project to J.P., M.A.B., P.A.R., C.R.B., M.C.D., J.G. and W.A.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and W.A. contributed equally to this work. J.G. and W.A. conceived the study, performed data curation and conducted formal analysis. Funding was acquired by J.P., M.A.B., P.A.R., M.C.D., C.R.B., J.G. and W.A. The investigation was carried out by J.G., W.A., C.B., N.N. and Q.T.V.W. Methodology was developed by W.A., J.G., C.R.B., M.A.B. and J.P. Project administration was handled by J.G., W.A. and J.P., with resources provided by J.P., P.A.R. and M.A.B. W.A. and J.G. were responsible for software. Supervision was overseen by J.P., M.A.B., P.A.R., C.R.B., M.C.D., J.G. and W.A. Validation of the results was conducted by W.A., J.G. and J.P. Visualization was created by W.A. and J.G. Original drafts were written by W.A., J.G., J.P. and M.A.B., and all authors reviewed and edited the final manuscript, including W.A., J.G., P.A.R., M.C.D., C.R.B., C.B., N.N., Q.T.V.W., M.A.B. and J.P.

Corresponding authors

Correspondence to Jonathan Gewirtzman or Jordan Peccia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jack Gilbert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Global distribution of studied tree genera.

The species included in this survey represent 16 species from 11 genera which have a global distribution, with the map colorized by the number of species within this set of genera native to each country (data from GlobalTreeSeacrch).

Extended Data Fig. 2 Prokaryotic abundance variation across tree species in wood tissues.

Prokaryotic abundances within the wood of living trees, as determined by 16S qPCR (per dry gram wood). Abundance distributions are split by species, with the mean heartwood and sapwood abundance identified by points per species. Estimates of the average 16S copies (assuming 4 copies per cell49) in three different biological media (per gram of human stomach fluid39, seawater50, and soil51) are identified in vertical red dashed lines. The number of cores sampled per species ranged from n = 2 to n = 38 (see Materials and Methods); a distribution is not shown for species with n < 3.

Extended Data Fig. 3 Alpha diversity patterns in wood and soil microbial communities.

Alpha diversity measures for (left) 16S rRNA and (right) ITS communities. Panels A-B: Chao1 diversity by sample type. Panels C-D: Chao1 diversity split by tree species and sample type. Panels E-F: Shannon diversity by sample type. Panels G-H: Shannon diversity split by tree species and sample type. Mean (±SD) represented by the larger outlined points and error bars. Individual points are unique samples. All analyses performed on rarefied data.

Extended Data Fig. 4 Phylogenetic congruence between tree species and their wood microbiomes.

The A.) phylogenetic relatedness of the 16 tree species included in this study, based on the PhytoPhylo megaphylogeny. Both Latin binomial names and species codes are included at the tips. Using both B, C.) 16S sequencing data and D, E.) ITS sequencing data, phylogenies showing the relatedness of living wood microbiomes between tree species were produced based on beta diversity (weighted UniFrac distance) similarity. Species codes in red represent tip pairings between microbial communities that match the phylogenetic relatedness between host tree species.

Extended Data Fig. 5 Microbial source tracking between wood tissues and surrounding environments.

Source-tracking results produced using FEAST, treating both A, C.) heartwood and B, D.) sapwood as “sinks.” For heartwood analyses, the contribution of sapwood, organic soil, and mineral soil communities was assessed, with “unknown” corresponding to taxa with indeterminate origins. For sapwood, the contribution of heartwood, organic soil, and mineral soil communities was assessed. Results are split by tree species, with the central number representing the average contribution out of all samples (out of 1). Analyses were performed in a paired manner, meaning that contribution estimates were assessed on a per tree basis (e.g., wood and soil samples specific to each tree, rather than bulk groups).

Extended Data Fig. 6 Community similarity patterns within and between wood tissue types.

Left panels: Barplots of estimated marginal means (EMMeans) of weighted UniFrac distances for intra- and inter-species tissue comparisons, grouped into within-species and between-species categories. EMMeans calculated using linear mixed-effects models with random effects for repeated sample involvement. Error bars show standard errors; pairwise comparisons adjusted using Sidak correction with significant differences denoted by distinct letters. Sample types: Sapwood-Heartwood, Sapwood-Sapwood, and Heartwood-Heartwood comparisons. Right panels: Heatmaps of mean weighted UniFrac distances between communities grouped by species and tissue type. Only groups with n > 5 wood samples are included in heatmaps. Distance values were averaged and hierarchically clustered. Tissue annotations show sapwood (blue) and heartwood (brown). Color gradient represents distance with red indicating greater dissimilarity and blue indicating greater similarity.

Extended Data Fig. 7 Unique and shared microbial taxa across forest compartments.

Venn diagrams showing the counts of unique and shared ASVs in each forest compartment for 16S (top) and ITS (bottom). ASV tables were filtered to remove chloroplast and mitochondrial DNA, as well as ultra-low abundance ASVs (≤10 reads). Percentages indicate the proportion of total ASVs in each compartment.

Extended Data Fig. 8 Alpha diversity across black oak tissue and environmental samples.

Alpha diversity estimates, using Chao1 and Shannon indices, for varying tissue and environmental samples from the black oak study, split by (top) prokaryotic and (bottom) fungal communities. Bar heights represent mean diversity, with the error bars representing ± SE.

Extended Data Fig. 9 Taxonomic composition across black oak compartments.

Top: Heatmaps showing relative abundance of the top 25 most abundant prokaryotic (top) and fungal (bottom) classes across different compartments of Black Oak (Quercus velutina). Samples were rarefied to 3,500 reads (prokaryotic) and 4,000 reads (fungal) prior to analysis. Relative abundance is displayed on a log scale with color intensity indicating abundance percentage (darker red = higher abundance). Classes are ordered by total abundance across all compartments.

Extended Data Fig. 10 Heartwood microbiome variation with tree height in black oak.

Variation in the A. fungal and prokaryotic heartwood microbiomes with tree height in the black oak (central numbers represent distance from ground in cm). The relatedness between those tissues, based on weighted UniFrac distances, is represented in B. and D., with ordination (PCoA, weighted UniFrac) of those same tissues in C. and E.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–12. The supplementary table provides species identification codes for all 16 tree species studied. The supplementary figures collectively demonstrate distinct microbial communities between heartwood and sapwood across multiple tree species, with detailed taxonomic compositions, functional predictions, gas concentration measurements and comprehensive analysis of a single black oak tree sectioned into multiple compartments. Includes quality control data (rarefaction curves) and statistical analyses (UniFrac distances, differential abundance testing).

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, W., Gewirtzman, J., Raymond, P.A. et al. A diverse and distinct microbiome inside living trees. Nature 644, 1039–1048 (2025). https://doi.org/10.1038/s41586-025-09316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09316-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing