Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing the heterogeneous nature of LiF in solid–electrolyte interphases

Subjects

Abstract

The electrolyte–electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid–electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs)1,2. However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge3. Here, taking lithium fluoride (LiF)—a widely studied and considered crucial SEI component4,5,6,7—as an example, we use 19F solid-state nuclear magnetic resonance (NMR) and identify that LiF formed in SEI (LiFSEI) has fruitful spectroscopy features that originated from the formation of limited LiF–LiH solid solutions: H-rich phase (LiH1yFy) and F-rich phase (LiF1xHx), which is further validated by 6Li isotope NMR, synchrotron X-ray diffraction and cryo-electron microscopy (cryo-EM). By characterizing SEI formed in various electrolytes, we confirm the dominance of LiH1yFy in high-coulombic-efficiency electrolyte, which can be rationalized by the fact that LiF–LiH solid solution shows improved ionic conductivity over LiF. As a proof of concept, we demonstrate that LiH1−yFy-rich coating layer presents obvious advantages compared with LiF-rich coating layer in lithium-metal batteries. This revised understanding of the heterogeneous nature of SEI components would provide new insights for electrode–electrolyte interface design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 19F MAS NMR spectrum of SEIs collected in cycled ‘anode-less’ batteries using 4 M LiFSI/DME electrolyte.
Fig. 2: Spectroscopic matching of LiFSEI and LiF1xHx by solid-state NMR.
Fig. 3: H-rich and F-rich phase separation in SEI samples.
Fig. 4: Beyond LiF-rich SEI design.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Source data provided with this paper. All other relevant data of this study are available from the corresponding authors on request.

References

  1. Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Xu, K. Interfaces and interphases in batteries. J. Power Sources 559, 232652 (2023).

    Article  CAS  Google Scholar 

  3. Popovic, J. The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat. Commun. 12, 6240 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating interphases. J. Electrochem. Soc. 166, A5184–A5186 (2018).

    Article  Google Scholar 

  5. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article  CAS  Google Scholar 

  6. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article  ADS  CAS  Google Scholar 

  7. Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).

    Article  CAS  Google Scholar 

  8. Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  CAS  Google Scholar 

  9. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Shen, X. et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10, 1903645 (2020).

    Article  CAS  Google Scholar 

  11. Xie, J. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3, eaao3170 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin, D. et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17, 3731–3737 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  CAS  Google Scholar 

  14. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  ADS  CAS  Google Scholar 

  15. Oyakhire, S. T., Gong, H., Cui, Y., Bao, Z. & Bent, S. F. An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Lett. 7, 2540–2546 (2022).

    Article  CAS  Google Scholar 

  16. Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ma, C., Xu, F. & Song, T. Dual-layered interfacial evolution of lithium metal anode: SEI analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces 14, 20197–20207 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Hope, M. A. et al. Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun. 11, 2224 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. May, R., Fritzsching, K. J., Livitz, D., Denny, S. R. & Marbella, L. E. Rapid interfacial exchange of Li ions dictates high Coulombic efficiency in Li metal anodes. ACS Energy Lett. 6, 1162–1169 (2021).

    Article  CAS  Google Scholar 

  20. Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 30, 16719–16732 (2021).

    Article  Google Scholar 

  21. Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Yildirim, H., Kinaci, A., Chan, M. K. Y. & Greeley, J. P. First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS Appl. Mater. Interfaces 7, 18985–18996 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Y. et al. Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 14, 2655 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. May, R., Hestenes, J. C., Munich, N. A. & Marbella, L. E. Fluorinated ether decomposition in localized high concentration electrolytes. J. Power Sources 553, 232299 (2023).

    Article  CAS  Google Scholar 

  26. Svirinovsky-Arbeli, A., Juelsholt, M., May, R., Kwon, Y. & Marbella, L. E. Using NMR spectroscopy to link structure to function at the Li solid electrolyte interphase. Joule 8, 1919–1935 (2024).

    Article  CAS  Google Scholar 

  27. Hu, J. Z., Kwak, J. H., Yang, Z., Wan, X. & Shaw, L. L. Detailed investigation of ion exchange in ball-milled LiH+MgB2 system using ultra-high field nuclear magnetic resonance spectroscopy. J. Power Sources 195, 3645–3648 (2010).

    Article  ADS  CAS  Google Scholar 

  28. Zhong, G. et al. Insights into the lithiation mechanism of CFx by a joint high-resolution 19F NMR, in situ TEM and 7Li NMR approach. J. Mater. Chem. A 7, 19793–19799 (2019).

    Article  CAS  Google Scholar 

  29. Gombotz, M. et al. Insulator:conductor interfacial regions — Li ion dynamics in the nanocrystalline dispersed ionic conductor LiF:TiO2. Solid State Ion. 369, 115726 (2021).

    Article  CAS  Google Scholar 

  30. Saldan, I. et al. Hydrogen sorption in the LiH–LiF–MgB2 system. J. Phys. Chem. C 117, 17360–17366 (2013).

    Article  CAS  Google Scholar 

  31. Pinatel, E. R., Corno, M., Ugliengo, P. & Baricco, M. Effects of metastability on hydrogen sorption in fluorine substituted hydrides. J. Alloys Compd. 615, S706–S710 (2014).

    Article  CAS  Google Scholar 

  32. Pighin, S. A., Urretavizcaya, G. & Castro, F. J. Reversible hydrogen storage in Mg(HxF1−x)2 solid solutions. J. Alloys Compd. 708, 108–114 (2017).

    Article  CAS  Google Scholar 

  33. Pistidda, C. et al. Effect of the partial replacement of CaH2 with CaF2 in the mixed system CaH2 + MgB2. J. Phys. Chem. C 118, 28409–28417 (2014).

    Article  CAS  Google Scholar 

  34. Sitthiwet, C. et al. Hydrogen sorption kinetics and suppression of NH3 emission of LiH-sandwiched LiNH2-LiH-TiF4-MWCNTs pellets upon cycling. J. Alloys Compd. 909, 164673 (2022).

    Article  CAS  Google Scholar 

  35. Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).

    Article  CAS  Google Scholar 

  36. Breuer, O., Gofer, Y., Elias, Y., Fayena-Greenstein, M. & Aurbach, D. Misuse of XPS in analyzing solid polymer electrolytes for lithium batteries. J. Electrochem. Soc. 171, 030510 (2024).

    Article  ADS  CAS  Google Scholar 

  37. Steinberg, K. et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat. Energy 8, 138–148 (2023).

    Article  ADS  CAS  Google Scholar 

  38. Ilott, A. J. & Jerschow, A. Probing solid-electrolyte interphase (SEI) growth and ion permeability at undriven electrolyte–metal interfaces using 7Li NMR. J. Phys. Chem. C 122, 12598–12604 (2018).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  42. Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  PubMed  Google Scholar 

  44. Henkelman, G. et al. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  ADS  CAS  Google Scholar 

  45. Wang, V. et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  46. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  ADS  CAS  Google Scholar 

  47. Brivio, F. et al. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1−xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Center for Industries of the Future (RCIF) at Westlake University and Westlake Education Foundation, National Natural Science Foundation of China (grant nos. 22309148, 22402161 and 52271203) and Postdoctoral Science Foundation of China (grant no. 2023M733176). The calculations were performed at Westlake High-Performance Computing Center. We express gratitude to X. Lu and D. Gu from the Instrumentation and Service Center for Molecular Sciences at Westlake University for their support in the NMR measurements. We thank Y. Lin, Q. Jiang and P. Sheng from the Instrumentation and Service Center for Physical Sciences at Westlake University for their assistance with the cryo-EM EELS measurements. We thank J. Huang, X. Chen, Q. Lu, Y. Jin and M. Lin for valuable discussion. We sincerely appreciate S. Gao at Fudan University for his valuable assistance in the analysis of EELS data.

Author information

Authors and Affiliations

Contributions

X. Liu, Y.Z., Y.S. and Y.X. conceived and designed this work. X. Liu, D.G., X. Lu and Y.X. performed the solid-state NMR experiments. X. Liu, C.Y., B.Z. and G.C. performed electrochemical characterization and SEI sample preparation. S.L. and Y.C. performed the LiF1xHx sample preparation and corresponding electrochemical characterizations. X. Liu, B.L. and H.L. performed diffraction experiments and corresponding data analysis. C.Y., Z.Y. and Y.Z. performed density functional theory calculations. X. Liu, B.Z., S.L., H.Q., Y.S., D.S. and Y.X. analysed the figures and wrote the paper. All of the authors participated in analysis of the experimental data and revised the paper.

Corresponding authors

Correspondence to Yizhou Zhu, Yun Song or Yuxuan Xiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–45, Supplementary Discussions 1 and 2 and Supplementary Tables 1 and 2.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, S., Yuan, C. et al. Probing the heterogeneous nature of LiF in solid–electrolyte interphases. Nature 646, 102–107 (2025). https://doi.org/10.1038/s41586-025-09498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09498-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing