Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deterministic soliton microcombs in Cu-free photonic integrated circuits

Abstract

Chip-scale optical frequency combs based on microresonators (microcombs) have provided access to optical combs with GHz-to-THz repetition rates, broad bandwidth, compact form factors and compatibility with wafer-scale manufacturing1. Si3N4 photonic integrated circuits emerged as a leading platform and have been used in nearly all system-level demonstrations so far, ranging from optical communications2, parallel lidar3, optical frequency synthesis4, low-noise microwave generation5 to parallel convolutional processing6. Yet, transitioning to real-world deployment outside laboratories has been compounded by the difficulty of deterministic soliton microcomb generation, primarily due to strong thermal instabilities. Although a variety of techniques have been developed to initiate soliton generation, including pulsed pumping, fast scanning and auxiliary-laser pumping7,8,9,10,11, these techniques do not eliminate thermal effects and often compromise microcomb performance, either by adding additional complexity or by reducing the accessible soliton existence range. Here we overcome thermal effects and demonstrate deterministic soliton generation in Si3N4 photonic integrated circuits. We trace thermal effects to unexpected copper impurities within the waveguides, which originate from residual contaminants in CMOS-grade Si wafers and are gettered into Si3N4 during fabrication. By developing copper removal techniques, we substantially reduce copper concentration and thereby mitigate thermal effects. We demonstrate successful dissipative Kerr soliton generation with arbitrary laser scanning profiles and slow laser scanning. Our techniques can be readily applied to front-end-of-line processing of Si3N4 devices in foundries, removing a key obstacle to the deployment of soliton microcomb technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermal absorption-induced instabilities in DKS generation in Si3N4 microresonators.
Fig. 2: Copper-induced thermal absorption loss in Si3N4 microresonators: origins and impacts on DKS generation.
Fig. 3: Substrate preparation techniques for copper-impurity-free PICs.
Fig. 4: Deterministic DKS generation in Si3N4 microresonators fabricated with copper-impurity-free silicon substrates using the photonic Damascene process.

Data availability

The experimental datasets and scripts used to produce the plots in this paper are available at Zenodo50 (https://doi.org/10.5281/zenodo.15773976).

References

  1. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  PubMed  Google Scholar 

  2. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    Article  ADS  CAS  Google Scholar 

  8. Brasch, V., Geiselmann, M., Pfeiffer, M. H. P. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24, 29312–29320 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206–212 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Zhou, H. et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8, 50 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Kao, K. C. & Hockham, G. A. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 113, 1151–1158 (1966).

    Article  Google Scholar 

  13. Miya, T., Terunuma, Y., Hosaka, T. & Miyashita, T. Ultimate low-loss single-mode fibre at 1.55 μm. Electr. Lett. 15, 106–108 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Ohishi, Y., Mitachi, S. & Kanamori, T. Impurity absorption losses in the infrared region due to 3d transition elements in fluoride glass. Jpn. J. Appl. Phys. 20, L787 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Mitachi, S., Terunuma, Y., Ohishi, Y. & Takahashi, S. Reduction of impurities in fluoride glass optical fiber. Jpn. J. Appl. Phys. 22, L537 (1983).

    Article  ADS  Google Scholar 

  16. Nagayama, K., Kakui, M., Matsui, M., Saitoh, T. & Chigusa, Y. Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance. Electron. Lett. 38, 1 (2002).

    Article  Google Scholar 

  17. Tamura, Y. et al. Lowest-ever 0.1419-dB/km loss optical fiber. In Proc. Optical Fiber Communication Conference Postdeadline Papers, Th5D–1 (Optica, 2017).

  18. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Article  ADS  Google Scholar 

  19. Sun, Y. et al. Applications of optical microcombs. Adv. Opt. Photon. 15, 86–175 (2023).

    Article  Google Scholar 

  20. Lu, X. et al. Emerging integrated laser technologies in the visible and short near-infrared regimes. Nat. Photon. 18, 1010–1023 (2024).

    Article  ADS  CAS  Google Scholar 

  21. Ye, Z., Fülöp, A., Helgason, Ó. B., Andrekson, P. A. & Torres-Company, V. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt. Lett. 44, 3326–3329 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photon. 6, 071101 (2021).

    Article  ADS  CAS  Google Scholar 

  23. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ji, X. et al. Efficient mass manufacturing of high-density, ultra-low-loss Si3N4 photonic integrated circuits. Optica 11, 1397–1407 (2024).

    Article  ADS  CAS  Google Scholar 

  25. Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zhao, P. et al. Ultra-broadband optical amplification using nonlinear integrated waveguides. Nature 640, 918–923 (2025).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Liu, Y. et al. A fully hybrid integrated erbium-based laser. Nat. Photon. 18, 829–835 (2024).

    Article  ADS  CAS  Google Scholar 

  29. Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 13, 3522 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Corcoran, B., Mitchell, A., Morandotti, R., Oxenløwe, L. K. & Moss, D. J. Optical microcombs for ultrahigh-bandwidth communications. Nat. Photon. 19, 451–462 (2025).

    Article  ADS  CAS  Google Scholar 

  32. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article  ADS  CAS  Google Scholar 

  33. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  CAS  Google Scholar 

  34. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  PubMed  Google Scholar 

  35. Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    Article  ADS  PubMed  Google Scholar 

  36. Wildi, T., Brasch, V., Liu, J., Kippenberg, T. J. & Herr, T. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett. 44, 4447–4450 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weng, H. et al. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons. APL Photon. 7, 066103 (2022).

    Article  ADS  CAS  Google Scholar 

  39. Ji, Q.-X. et al. Dispersive-wave-agile optical frequency division. Nat. Photon. 19, 624–629 (2025).

    Article  ADS  CAS  Google Scholar 

  40. Ji, Q.-X. et al. Multimodality integrated microresonators using the moiré speedup effect. Science 383, 1080–1083 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Rowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303–309 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pfeiffer, M. H. P. et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).

    Article  ADS  CAS  Google Scholar 

  43. Liu, S., Zhang, Y., Hariri, A., Al-Hallak, A.-R. & Zhang, Z. Fabrication of ultra-low-loss, dispersion-engineered silicon nitride photonic integrated circuits via silicon hardmask etching. ACS Photon. 12, 1039–1046 (2024).

  44. Myers, S. M., Seibt, M. & Schröter, W. Mechanisms of transition-metal gettering in silicon. J. Appl. Phys. 88, 3795–3819 (2000).

    Article  ADS  CAS  Google Scholar 

  45. Liu, A. Y. et al. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films. J. Appl. Phys. 120, 193103 (2016).

    Article  ADS  Google Scholar 

  46. Inglese, A., Laine, H. S., Vähänissi, V. & Savin, H. Cu gettering by phosphorus-doped emitters in p-type silicon: Effect on light-induced degradation. AIP Adv. 8, 015112 (2018).

    Article  ADS  Google Scholar 

  47. Liu, A. et al. Gettering of transition metals in high-performance multicrystalline silicon by silicon nitride films and phosphorus diffusion. J. Appl. Phys. 125, 043103 (2019).

    Article  ADS  Google Scholar 

  48. Le, T. T. et al. Impurity gettering by silicon nitride films: kinetics, mechanisms, and simulation. ACS Appl. Energy Mater. 4, 10849–10856 (2021).

    Article  CAS  Google Scholar 

  49. Kim, K.-S., Joo, Y.-C., Kim, K.-B. & Kwon, J.-Y. Extraction of Cu diffusivities in dielectric materials by numerical calculation and capacitance-voltage measurement. J. Appl. Phys. 100, 063517 (2006).

    Article  ADS  Google Scholar 

  50. Ji, X. & Li, X. Deterministic soliton microcombs in Cu-free photonic integrated circuits. Zenodo https://doi.org/10.5281/zenodo.15773976 (2025).

  51. Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ali Torkaman for contributions to soliton generation experiments. The Si3N4 samples were fabricated in the EPFL Center of MicroNanoTechnology. The SIMS measurements were performed by X. Liu at Eurofins EAG Laboratories. This work was supported by the Horizon Europe EIC transition programme under grant no. 101136978 (CombTools) and funded by the Swiss State Secretariat for Education, Research and Innovation. This work was supported by the Swiss National Science Foundation under grant agreement no. 216493 (HEROIC). This work was further sponsored by the Army Research Office and was accomplished under Award Number W911NF-25-2-0145. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Contributions

T.J.K. conceived the idea and the concept. X.J. designed the Si3N4 samples. A.G. performed the simulation. X.J., X.L., R.N.W. and Z.Q. fabricated the Si3N4 samples. X.J. designed and performed the Cu-gettering experiment with assistance from Z.Q.; M.D. coordinated the SIMS measurements with Eurofins EAG Laboratories. X.J. and X.L. characterized and analysed the Si3N4 samples. X.L. performed the soliton generation experiment with assistance from G.L.; X.J. and X.L. wrote the paper with input from all co-authors. T.J.K. supervised the project.

Corresponding author

Correspondence to Tobias J. Kippenberg.

Ethics declarations

Competing interests

T.J.K. is a cofounder and shareholder of LiGenTec SA, a start-up company offering Si3N4 PICs as a foundry service.

Peer review

Peer review information

Nature thanks Martino Bernard, Mher Ghulinyan and David Moss for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 SIMS depth profiles of 14 metal impurities in a fully SiO2-cladded Si3N4 waveguide.

The x-axis represents sputtering depth, the y-axis denotes metal species, and the z-axis indicates impurity concentration. Background colors indicate the layer structure. Sample ID: D100_01_F1_C7.

Extended Data Fig. 2 Copper contamination impact on thermal absorption and soliton generation in Si3N4 microresonators.

a, Schematic of the Cu contamination experiment, where a Cu-coated Si wafer is placed beneath the Si3N4 chip during a 1000 °C, 4 hour thermal process in N2. Device ID: D163_01_F2_C3. b, Histogram of intrinsic loss rate κ0/2π before and after Cu diffusion. c, Kerr-normalized thermal response measurements before and after deliberate copper diffusion, at the same resonance near 1550 nm in TE polarization. d, Measured soliton step lengths in TE polarization, showing shorter steps in microresonators after Cu diffusion. e, SIMS depth profiles revealing Cu incorporation into Si3N4 waveguides after thermal treatment. SIMS results are calibrated to the Si3N4 filling ratio in the mixed Si3N4/SiO2 waveguide layer.

Extended Data Fig. 3 Pathway of Cu diffusion into Si3N4 waveguides during device fabrication.

a, Schematic of the photonic Damascene process for low-loss Si3N4 waveguide fabrication, including preform etching, reflow, LPCVD Si3N4 and SiO2 deposition, planarization, and annealing. b-e, Depth-resolved Cu concentration profiles: b, after preform etching and reflow; c, post Si3N4 deposition and planarization; d, after Si3N4 annealing (1200 °C, 11 hours), showing Cu incorporation into the Si3N4 waveguide; e, post SiO2 cladding deposition and annealing, revealing Cu localization exclusively within the Si3N4 waveguide core.

Extended Data Fig. 4 SIMS characterization of Cu concentration in Si wafers coated with LPCVD and PECVD Si3N4 films.

The deposited Si3N4 films, measuring  ~200 nm in thickness for both LPCVD and PECVD, were annealed at 800 °C for varying durations. SIMS analysis reveals higher detectable Cu concentrations in PECVD Si3N4 films compared to LPCVD films, indicating enhanced gettering efficiency in PECVD films due to a higher density of Cu trapping sites. In contrast, LPCVD Si3N4 films exhibit a constant Cu level regardless of annealing time.

Extended Data Fig. 5 Optical loss, thermal absorption, and SIMS characterization of gettered versus non-gettered Si3N4 microresonators.

a, Resonance intrinsic linewidth (κ0/2π) measurements from 1310-1630 nm (TE polarization), comparing gettered (blue) and non-gettered (red, labeled ‘normal’) devices. Sample IDs: gettered (D163_03_F1_C7_1_04), non-gettered (D163_11_F1_C7_2_04). b, Histogram of κ0/2π for devices in a. c, Kerr-normalized thermal response measurements at resonances near 1520, 1530, 1550, and 1560 nm for both devices. Colored regions denote thermal-dominated regimes at low modulation frequencies. d, Soliton step formation during pump laser scanning. e, Comparative SIMS depth profiles of Cu contamination in gettered versus non-gettered devices.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Li, X., Qiu, Z. et al. Deterministic soliton microcombs in Cu-free photonic integrated circuits. Nature 646, 843–849 (2025). https://doi.org/10.1038/s41586-025-09598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09598-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing