Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tin-based perovskite solar cells with a homogeneous buried interface

Abstract

Tin-based perovskite solar cells (TPSCs) have emerged as a promising non-toxic and environmentally friendly alternative to lead-based devices1,2,3, with certified power conversion efficiencies (PCEs) of inverted architectures now exceeding 16% (refs. 4,5,6,7,8). Despite an ideal bandgap supporting a theoretical PCE of more than 33%, TPSCs still lag in performance and stability, partly because of suboptimal hole transport layers and a poor buried interface that hinder hole extraction. Here we report (E)-(2-(4′,5′-bis(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2′-bithiophen]−5-yl)−1-cyanovinyl)phosphonic acid at the buried interface, using a molecular film to optimize hole transport layers in inverted TPSCs. This molecular film forms a homogeneous interfacial layer with well-matched energy-level alignment, markedly enhancing hole extraction. Moreover, this approach creates a superwetting underlayer that guides the growth of uniform, high-quality Sn-based perovskite films with reduced defect density and minimized non-radiative recombination losses. The resulting inverted small-area TPSCs demonstrate a record PCE of 17.89% (certified 17.71% under reverse scanning mode). Furthermore, the encapsulated device maintains more than 95% of the initial PCE after 1,344 h of ambient shelf storage and more than 94% after 1,550 h of continuous operation under 1-sun illumination. Notably, we achieve a record PCE of 14.40% for 1 cm2 TPSCs, highlighting the scalability of our strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Homogeneous molecular distribution and optimized band alignment for enhanced hole extraction and transfer.
Fig. 2: Morphologies and structures of Sn-based perovskite films at buried interfaces.
Fig. 3: High phase purity minimizes interfacial energy losses.
Fig. 4: Photovoltaic performance of TPSCs.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Source data are provided with this paper.

References

  1. Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Li, J. et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 11, 310 (2020).

    Article  ADS  PubMed Central  Google Scholar 

  3. Ren, M., Qian, X., Chen, Y., Wang, T. & Zhao, Y. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. J. Hazard. Mater. 426, 127848 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. He, D. et al. Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics. Nat. Nanotechnol. 20, 779–786 (2025).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Chen, J. et al. Spatially isomeric fulleropyrrolidines enable controlled stacking of perovskite colloids for high-performance tin-based perovskite solar cells. Angew. Chem. Int. Ed. 64, e202420150 (2025).

    Article  CAS  Google Scholar 

  6. Chen, J. et al. Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives. Nat. Photon. 18, 464–470 (2024).

    Article  ADS  CAS  Google Scholar 

  7. Wang, J. et al. Colloidal zeta potential modulation as a handle to control the crystallization kinetics of tin halide perovskites for photovoltaic applications. Angew. Chem. Int. Ed. 63, e202317794 (2024).

    Article  CAS  Google Scholar 

  8. Shi, Y. et al. Interfacial dipoles boost open-circuit voltage of tin halide perovskite solar cells. ACS Energy Lett. 9, 1895–1897 (2024).

    Article  CAS  Google Scholar 

  9. Li, T. et al. Functional layers in efficient and stable inverted tin-based perovskite solar cells. Joule 7, 1966–1991 (2023).

    Article  CAS  Google Scholar 

  10. Li, T. et al. Alleviating the crystallization dynamics and suppressing the oxidation process for tin-based perovskite solar cells with fill factors exceeding 80 percent. Adv. Funct. Mater. 33, 2308457 (2023).

    Article  CAS  Google Scholar 

  11. Li, T. et al. Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells. Nat. Commun. 15, 9435 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, J. et al. Acidity control of interface for improving stability of all-perovskite tandem solar cells. Adv. Energy Mater. 13, 2300968 (2021).

    Article  Google Scholar 

  13. Cameron, J. & Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horiz. 7, 1759–1772 (2020).

    Article  CAS  Google Scholar 

  14. Jing, Y. et al. Interface field engineering of weakly alkaline-treated PEDOT:PSS for enhanced performance and stability of tin-based perovskite solar cells. J. Phys. Chem. Lett. 16, 5258–5264 (2025).

    Article  CAS  PubMed  Google Scholar 

  15. Chin, Y. et al. Suppressing PEDOT:PSS doping-induced interfacial recombination loss in perovskite solar cells. ACS Energy Lett. 7, 560–568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, J. et al. A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8, 714–724 (2023).

    Article  ADS  CAS  Google Scholar 

  17. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Li, Z. et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Wang, F. et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2, 2732–2743 (2018).

    Article  CAS  Google Scholar 

  20. Tong, X. et al. Solution-processed NiOx nanoparticles with a wide pH window as an efficient hole transport material for high performance tin-based perovskite solar cells. J. Phys. D Appl. Phys. 54, 144002 (2021).

    Article  ADS  CAS  Google Scholar 

  21. Wang, T. et al. 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8, 2004315 (2021).

    Article  CAS  Google Scholar 

  22. Li, B. et al. Suppressing oxidation at perovskite–NiOx interface for efficient and stable tin perovskite solar cells. Adv. Mater. 36, 2309768 (2023).

    Article  Google Scholar 

  23. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article  ADS  Google Scholar 

  25. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zhao, K. et al. Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).

    Article  ADS  CAS  Google Scholar 

  27. Zheng, X. et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8, 462–472 (2023).

    Article  ADS  CAS  Google Scholar 

  28. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  ADS  CAS  Google Scholar 

  29. Wang, X. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photon. 18, 1269–1275 (2024).

    Article  ADS  CAS  Google Scholar 

  30. Tang, H. et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024).

    Article  ADS  CAS  Google Scholar 

  31. Fei, C. et al. Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384, 1126–1134 (2024).

    Article  ADS  CAS  Google Scholar 

  32. Li, M., Liu, M., Feng, Q., Lin, F. R. & Jen, A. K.-Y. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem. Rev. 124, 2138–2204 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Bi, H. Selective contact self-assembled molecules for high-performance perovskite solar cells. eScience 5, 100329 (2025).

    Article  Google Scholar 

  34. Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Isikgor, F. H. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023).

    Article  ADS  CAS  Google Scholar 

  36. Jin, J. et al. Regulating compressive strain enables high-performance tin-based perovskite solar cells. Adv. Energy Mater. 15, 2403718 (2025).

    Article  CAS  Google Scholar 

  37. Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Jiang, X. et al. One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143, 10970–10976 (2021).

    Article  ADS  CAS  Google Scholar 

  40. Yu, B.-B. et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33, 2102055 (2021).

    Article  CAS  Google Scholar 

  41. Sun, C. et al. Well-defined fullerene bisadducts enable high-performance tin-based perovskite solar cells. Adv. Mater. 35, 2205603 (2023).

    Article  CAS  Google Scholar 

  42. Zhou, X. et al. Additive engineering with 2,8-dibromo-dibenzothiophene-S,S-dioxide enabled tin-based perovskite solar cells with 14.98% power conversion efficiency. Energy Environ. Sci. 17, 2837–2844 (2024).

    Article  CAS  Google Scholar 

  43. Ran, C. et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 12, 3072–3087 (2019).

    Article  Google Scholar 

  44. Zhang, Z. et al. Improved air stability of tin halide perovskite solar cells by an n-type active moisture barrier. Adv. Funct. Mater. 34, 2306458 (2024).

    Article  CAS  Google Scholar 

  45. Liu, X. et al. Lead-free perovskite solar cells with over 10% efficiency and size 1 cm2 enabled by solvent–crystallization regulation in a two-step deposition method. ACS Energy Lett. 7, 425–431 (2022).

    Article  ADS  CAS  Google Scholar 

  46. Ye, T. et al. Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%. ACS Energy Lett. 6, 1480–1489 (2021).

    Article  CAS  Google Scholar 

  47. Chowdhury, T. H. et al. Post-deposition vapor annealing enables fabrication of 1 cm2 lead-free perovskite solar cells. Sol. RRL 3, 1900245 (2019).

    Article  CAS  Google Scholar 

  48. Vegiraju, S. et al. Benzodithiophene hole-transporting materials for efficient tin-based perovskite solar cells. Adv. Funct. Mater. 29, 1905393 (2019).

    Article  CAS  Google Scholar 

  49. Ke, W. et al. Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. J. Am. Chem. Soc. 140, 388–393 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Ke, W. et al. Efficient lead-free solar cells based on hollow {en}MASnI3 perovskites. J. Am. Chem. Soc. 139, 14800–14806 (2017).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

J.L. acknowledges the funding support from the National Natural Science Foundation of China (52102219 and 52471197). Y.R. acknowledges the funding support from the National Natural Science Foundation of China (52202178). H.W. acknowledges the National Natural Science Foundation of China (62074109, 22372114). B.X. acknowledges the Natural Science Foundation of Jiangsu Province (BK20240083) and the National Natural Science Foundation of China (22279059, W2412114). Y.Q. acknowledges the support from the Global Institute of Future Technology and the Zhangjiang Institute for Advanced Study in Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Contributions

T.L. fabricated and characterized the devices and wrote the original draft. X.L., Y.L., J.H., H.W. and B.X. designed and synthesized MBC and MBP. P.W. and Z.L. conducted all calculations. P.W., Z.L., W.Z. and Z.J. actively contributed to all discussions. Y.Y. contributed to the GIWAXS test and analysis. S.L. and Y.R. contributed to the SEM test and analysis. B.L. and Q.Z. carried out the EIS experiments. Y.Z. and Q.Z. supported this work. J.L. and Y.Q. conceived the idea and were responsible for reviewing and editing the paper, supervision, project administration and funding acquisition for this work. Y.Q. contributed to revisions of the manuscript.

Corresponding authors

Correspondence to Bo Xu, Jia Liang or Yabing Qi.

Ethics declarations

Competing interests

J.H. is the founder of Shanghai Nanoshine Technology, which commercializes functional materials for perovskite photovoltaics. The other authors declare that they have no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Schemes 1–4, Supplementary Note I, Supplementary Figs. 1–31, Supplementary Tables 1–5 and references.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Luo, X., Wang, P. et al. Tin-based perovskite solar cells with a homogeneous buried interface. Nature 648, 84–90 (2025). https://doi.org/10.1038/s41586-025-09724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09724-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing