Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accelerating the discovery of multicatalytic cooperativity

Abstract

Cooperative catalysis, in which multiple catalytic units operate synergistically, underpins a variety of synthetically and mechanistically important organic reactions1,2,3,4. Despite its potential utility in new reactivity contexts, approaches to the discovery of cooperative catalysts have been limited, typically relying on serendipity or on previous knowledge of single-catalyst reactivity1,5. Systematic searches for unanticipated types of catalyst cooperativity must contend with vast combinatorial complexity and are therefore not undertaken6,7,8,9,10. Here we describe a pooling–deconvolution algorithm, inspired by group testing11, which identifies cooperative catalyst behaviours with low experimental cost while accommodating potential inhibitory effects between catalyst candidates. The workflow was validated first on simulated cooperativity data and then by experimentally identifying previously documented cooperativity between organocatalysts in an enantioselective oxetane-opening reaction. The workflow was then applied in a discovery context to a Pd-catalysed decarbonylative cross-coupling reaction, enabling the identification of several ligand pairs that promote the target transformation at substantially lower catalyst loading and temperature than previously reported with single-ligand systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges and opportunities for the empirical discovery of catalytic cooperativity.
Fig. 2: Development and simulation-based testing of pooling–deconvolution algorithm.
Fig. 3: Validation of pooling–deconvolution workflow on a catalytic enantioselective oxetane opening.
Fig. 4: Deploying the pooling–deconvolution workflow to discover ligand cooperativity in a Pd-catalysed decarbonylative Suzuki–Miyaura coupling.

Similar content being viewed by others

Data availability

All data are available in the main text, in the SI, and on Zenodo (https://doi.org/10.5281/zenodo.17316238). Illustrations of “automated plating” and “high-throughput UPLC” in Fig. 4b were created in Adobe Illustrator.

Code availability

All code is available on Zenodo (https://doi.org/10.5281/zenodo.17316238). In addition to a persistent version on Zenodo, the Python library developed for simulation and execution is maintained on GitHub under the GPL 3.0 license (https://github.com/msh-yi/multicat-data).

References

  1. Allen, A. E. & MacMillan, D. W. C. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658 (2012).

    Article  CAS  Google Scholar 

  2. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Romiti, F. et al. Different strategies for designing dual-catalytic enantioselective processes: from fully cooperative to non-cooperative systems. J. Am. Chem. Soc. 141, 17952–17961 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Matsunaga, S. & Shibasaki, M. Recent advances in cooperative bimetallic asymmetric catalysis: dinuclear Schiff base complexes. Chem. Commun. 50, 1044–1057 (2013).

    Article  Google Scholar 

  5. Martínez, S., Veth, L., Lainer, B. & Dydio, P. Challenges and opportunities in multicatalysis. ACS Catal. 11, 3891–3915 (2021).

    Article  Google Scholar 

  6. Reetz, M. T., Sell, T., Meiswinkel, A. & Mehler, G. A new principle in combinatorial asymmetric transition-metal catalysis: mixtures of chiral monodentate P ligands. Angew. Chem. Int. Ed. 42, 790–793 (2003).

    Article  CAS  Google Scholar 

  7. Reetz, M. T. & Mehler, G. Mixtures of chiral and achiral monodentate ligands in asymmetric Rh-catalyzed olefin hydrogenation: reversal of enantioselectivity. Tetrahedron Lett. 44, 4593–4596 (2003).

    Article  CAS  Google Scholar 

  8. Duursma, A. et al. First examples of improved catalytic asymmetric C−C bond formation using the monodentate ligand combination approach. Org. Lett. 5, 3111–3113 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Peña, D. et al. Improving conversion and enantioselectivity in hydrogenation by combining different monodentate phosphoramidites; a new combinatorial approach in asymmetric catalysis. Org. Biomol. Chem. 1, 1087–1089 (2003).

    Article  PubMed  Google Scholar 

  10. Schaufelberger, F. & Ramström, O. Dynamic covalent organocatalysts discovered from catalytic systems through rapid deconvolution screening. Chem. Eur. J. 21, 12735–12740 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Aldridge, M., Johnson, O. & Scarlett, J. Group testing: an information theory perspective. Found. Trends Commun. Inf. Theory 15, 196–392 (2019).

    Article  Google Scholar 

  12. Berg, J. M., Gatto, G. G., Hines, J., Tymoczko, J. L. & Stryer, L. Biochemistry (W. H. Freeman, 2023).

  13. Knowles, J. R. Enzyme catalysis: not different, just better. Nature 350, 121–124 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Wolfenden, R. & Snider, M. J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34, 938–945 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kraut, D. A., Carroll, K. S. & Herschlag, D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 72, 517–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hansen, K. B., Leighton, J. L. & Jacobsen, E. N. On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (salen)CrIII complexes. J. Am. Chem. Soc. 118, 10924–10925 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Ready, J. M. & Jacobsen, E. N. Highly active oligomeric (salen)Co catalysts for asymmetric epoxide ring-opening reactions. J. Am. Chem. Soc. 123, 2687–2688 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. White, D. E., Tadross, P. M., Lu, Z. & Jacobsen, E. N. A broadly applicable and practical oligomeric (salen)Co catalyst for enantioselective epoxide ring-opening reactions. Tetrahedron 70, 4165–4180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ford, D. D., Lehnherr, D., Kennedy, C. R. & Jacobsen, E. N. Anion-abstraction catalysis: the cooperative mechanism of α-chloroether activation by dual hydrogen-bond donors. ACS Catal. 6, 4616–4620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DiRocco, D. A. et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356, 426–430 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Levi, S. M. & Jacobsen, E. N. in Organic Reactions 801–852 (Wiley, 2019).

  22. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, U. B., Jung, D. J., Jeon, H. J., Rathwell, K. & Lee, S. Synergistic dual transition metal catalysis. Chem. Rev. 120, 13382–13433 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, C. J. et al. A brief introduction to chemical reaction optimization. Chem. Rev. 123, 3089–3126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Zahrt, A. F., Athavale, S. V. & Denmark, S. E. Quantitative structure–selectivity relationships in enantioselective catalysis: past, present, and future. Chem. Rev. 120, 1620–1689 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Rinehart, N. I. et al. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C–N couplings. Science 381, 965–972 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Wang, J. Y. et al. Identifying general reaction conditions by bandit optimization. Nature 626, 1025–1033 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Mallapaty, S. The mathematical strategy that could transform coronavirus testing. Nature 583, 504–505 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Wolf, E., Richmond, E. & Moran, J. Identifying lead hits in catalyst discovery by screening and deconvoluting complex mixtures of catalyst components. Chem. Sci. 6, 2501–2505 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steimbach, R. R., Kollmus, P. & Santagostino, M. A validated “pool and split” approach to screening and optimization of copper-catalyzed C–N cross-coupling reactions. J. Org. Chem. 86, 1528–1539 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Fordham, J. M., Kollmus, P., Cavegn, M., Schneider, R. & Santagostino, M. A “pool and split” approach to the optimization of challenging Pd-catalyzed C–N cross-coupling reactions. J. Org. Chem. 87, 4400–4414 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Wieland, J. & Breit, B. A combinatorial approach to the identification of self-assembled ligands for rhodium-catalysed asymmetric hydrogenation. Nat. Chem. 2, 832–837 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Robbins, D. W. & Hartwig, J. F. A simple, multidimensional approach to high-throughput discovery of catalytic reactions. Science 333, 1423–1427 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gordon, D. M., Patashnik, O. & Kuperberg, G. New constructions for covering designs. J. Comb. Des. 3, 269–284 (1995).

    Article  MathSciNet  Google Scholar 

  38. Gordon, D. M. & Stinton, D. in Handbook of Combinatorial Designs 365–372 (Chapman and Hall, 2006).

  39. Schönheim, J. On coverings. Pac. J. Math. 14, 1405–1411 (1964).

    Article  Google Scholar 

  40. Gordon, D. M., Patashnik, O., Kuperberg, G. & Spencer, J. H. Asymptotically optimal covering designs. J. Comb. Theory Ser. A 75, 270–280 (1996).

    Article  MathSciNet  Google Scholar 

  41. Gordon, D. M. Covering designs. https://www.dmgordon.org/cover/ (2025).

  42. Hautus, M. J., Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide (Routledge, 2022).

  43. Yang, W., Wang, Z. & Sun, J. Enantioselective oxetane ring opening with chloride: unusual use of wet molecular sieves for the controlled release of HCl. Angew. Chem. Int. Ed. 55, 6954–6958 (2016).

    Article  CAS  Google Scholar 

  44. Strassfeld, D. A., Wickens, Z. K., Picazo, E. & Jacobsen, E. N. Highly enantioselective, hydrogen-bond-donor catalyzed additions to oxetanes. J. Am. Chem. Soc. 142, 9175–9180 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Strassfeld, D. A., Algera, R. F., Wickens, Z. K. & Jacobsen, E. N. A case study in catalyst generality: simultaneous, highly-enantioselective Brønsted- and Lewis-acid mechanisms in hydrogen-bond-donor catalyzed oxetane openings. J. Am. Chem. Soc. 143, 9585–9594 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strassfeld, D. A. Novel Transformations and Strategies in Enantioselective Catalysis Enabled by Non-Covalent Transition State Stabilization. PhD thesis, Harvard Univ. (2020).

  47. Manville, N., Alite, H., Haeffner, F., Hoveyda, A. H. & Snapper, M. L. Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts. Nat. Chem. 5, 768–774 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Malapit, C. A., Ichiishi, N. & Sanford, M. S. Pd-catalyzed decarbonylative cross-couplings of aroyl chlorides. Org. Lett. 19, 4142–4145 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, T., Xie, P.-P., Ji, C.-L., Hong, X. & Szostak, M. Decarbonylative Suzuki–Miyaura cross-coupling of aroyl chlorides. Org. Lett. 22, 6434–6440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Verbicky, J. W. Jr, Dellacoletta, B. A. & Williams, L. Palladium catalyzed decarbonylation of aromatic acyl chlorides. Tetrahedron Lett. 23, 371–372 (1982).

    Article  CAS  Google Scholar 

  51. Obora, Y., Tsuji, Y. & Kawamura, T. Palladium-catalyzed decarbonylative coupling of acid chlorides, organodisilanes, and 1,3-dienes. J. Am. Chem. Soc. 115, 10414–10415 (1993).

    Article  ADS  CAS  Google Scholar 

  52. Sugihara, T., Satoh, T. & Miura, M. Mizoroki–Heck type arylation of alkenes using aroyl chlorides under base-free conditions. Tetrahedron Lett. 46, 8269–8271 (2005).

    Article  CAS  Google Scholar 

  53. King, R. P., Krska, S. W. & Buchwald, S. L. A ligand exchange process for the diversification of palladium oxidative addition complexes. Org. Lett. 23, 6030–6034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gensch, T. et al. A comprehensive discovery platform for organophosphorus ligands for catalysis. J. Am. Chem. Soc. 144, 1205–1217 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Dotson, J. J. et al. Data-driven multi-objective optimization tactics for catalytic asymmetric reactions using bisphosphine ligands. J. Am. Chem. Soc. 145, 110–121 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 19, 227–229 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Fors, B. P. & Buchwald, S. L. A multiligand based Pd catalyst for C−N cross-coupling reactions. J. Am. Chem. Soc. 132, 15914–15917 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fan, Y., Cong, M. & Peng, L. Mixed-ligand catalysts: a powerful tool in transition-metal-catalyzed cross-coupling reactions. Chem. Eur. J. 20, 2698–2702 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Li, H. et al. Transformations of aryl ketones via ligand-promoted C−C bond activation. Angew. Chem. Int. Ed. 132, 14494–14499 (2020).

    Article  ADS  Google Scholar 

  60. Wakioka, M. et al. Mixed-ligand approach to palladium-catalyzed direct arylation of heteroarenes with aryl chlorides: controlling reactivity of catalytic intermediates via dynamic ligand exchange. Organometallics 42, 3454–3465 (2023).

    Article  CAS  Google Scholar 

  61. Wang, G.-Y., Ge, Z., Ding, K. & Wang, X. Cooperative bimetallic catalysis via one-metal/two-ligands: mechanistic insights of polyfluoroarylation-allylation of diazo compounds. Angew. Chem. Int. Ed. 135, e202307973 (2023).

    Article  Google Scholar 

  62. Kaltenberger, S. & van Gemmeren, M. Controlling reactivity and selectivity in the nondirected C–H activation of arenes with palladium. Acc. Chem. Res. 56, 2459–2472 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, D., Xu, P. & Ritter, T. Palladium-catalyzed late-stage direct arene cyanation. Chem. 5, 97–107 (2019).

    Article  CAS  Google Scholar 

  64. Sinha, S. K. et al. Dual ligand enabled nondirected C–H chalcogenation of arenes and heteroarenes. J. Am. Chem. Soc. 144, 12032–12042 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Meng, G. et al. Dual-ligand catalyst for the nondirected C–H olefination of heteroarenes. J. Am. Chem. Soc. 145, 8198–8208 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, X.-X. & Jiao, L. Dual ligand enabled Pd-catalyzed ortho-alkylation of iodoarenes. J. Am. Chem. Soc. 146, 25552–25561 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Merck Sharp & Dohme, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, the National Science Foundation through grant no. CHE-2247494, and the National Institutes of Health through grant no. GM149244. We thank D. Strassfeld for documenting and investigating cooperativity in the TMSBr oxetane opening reaction and for their discussions. We thank G. Lovinger for early exploration of cooperativity in the TMSCl oxetane opening reaction and for early conceptual discussions. We thank S. Li for early exploration of Cu-based ligand cooperativity. We thank T. Adrianov, M. Brenner, D. X. Chen, D. Diaz, W. Goh, S. Gopalakrishnan, D. Gordon, A. LaPorte, S. Nistanaki, E. R. Raguram and C. Wagen for helpful discussions. We thank C. Yeung, N. Sciammetta, E. Edelstein, A. Neel, R. Ruck, S. Grosser, the Catalysis and Capabilities Network, Discovery Process Chemistry, and Data-Rich Experimentation at Merck & Co., Inc., Rahway, NJ, USA for generous experimental resources. We thank S. Miller for a generous donation of catalyst 1k. We thank an anonymous referee for proposing an operational, well-behaved definition of Q.

Author information

Authors and Affiliations

Authors

Contributions

M.H.S., E.E.K. and E.N.J. conceptualized the study. M.H.S. conducted the formal analysis. E.N.J. and E.E.K. helped with funding acquisition. M.H.S. conducted the investigation. M.H.S., E.N.J., E.E.K. and R.Y.L. devised the methodology. E.N.J. administered the project. E.E.K., E.N.J. and R.Y.L. provided the resources. M.H.S. wrote the software. E.N.J., E.E.K. and R.Y.L. supervised the project. M.H.S. validated the study, performed data visualization and wrote the original draft. M.H.S., E.N.J., E.E.K. and R.Y.L. reviewed and edited the paper.

Corresponding authors

Correspondence to Richard Y. Liu, Eugene E. Kwan or Eric N. Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Materials and Methods, Supplementary Text, Supplementary Figs. 1–12 and Supplementary Tables 1–21.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sak, M.H., Liu, R.Y., Kwan, E.E. et al. Accelerating the discovery of multicatalytic cooperativity. Nature 648, 333–340 (2025). https://doi.org/10.1038/s41586-025-09813-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09813-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing