Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent nonlinear X-ray four-photon interaction with core-shell electrons

Abstract

Coherent nonlinear light–matter interaction with X-rays gives access to a regime in ultrafast spectroscopy in which atomic resolution meets femtosecond and attosecond timescales1,2. Particularly, X-ray four-wave mixing, involving several resonant transitions in a single coherent nonlinear process, has the potential to provide information on the electronic states coupling, coherent electron motion, correlation and dynamics, with state and site selectivity3,4,5. Here we demonstrate coherent, background-free four-photon interactions with core-shell electrons using single broadband X-ray pulses from a free-electron laser. The all-X-ray four-wave mixing signals, measured in gaseous neon, arise from doubly resonant nonlinear processes involving Raman transitions6, including X-ray coherent anti-Stokes electronic Raman scattering. The 2D spectral maps (photon-in/photon-out) represent a step towards multidimensional correlation spectroscopy at the atomic scale. Using a multicolour time-delayed X-ray pulse scheme, we further demonstrate the feasibility of extending the proposed methodology to the ultrafast time domain. These results reveal potential for studying localized electron dynamics in multiple systems, from biomolecules to correlated quantum materials, with applications in areas such as energy conversion, biomedical imaging and quantum information technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of the experimental set-up and spatial characterization of the XFWM signal.
Fig. 2: Spectral analysis and simulation of the all-X-ray FWM signal.
Fig. 3: Time-resolved XFWM.
Fig. 4: Covariance map and X-ray coherent Raman scattering signal.

Similar content being viewed by others

Data availability

The raw data used in this study are available in a collaborative manner at the PSI Public Data Repository: https://doi.org/10.16907%2F7a7bd9c2-3258-454f-96cd-4c8f9d46464c.

Code availability

Data analysis codes are available on request. The codes for the model are available in a collaborative manner on request.

References

  1. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Leone, S. R. & Neumark, D. M. Probing matter with nonlinear spectroscopy. Science 379, 536–537 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Tanaka, S. & Mukamel, S. Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002).

    Article  ADS  PubMed  Google Scholar 

  4. Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).

    Article  CAS  Google Scholar 

  5. Chergui, M., Beye, M., Mukamel, S., Svetina, C. & Masciovecchio, C. Progress and prospects in nonlinear extreme-ultraviolet and X-ray optics and spectroscopy. Nat. Rev. Phys. 5, 578–596 (2023).

    Article  Google Scholar 

  6. Weninger, C. et al. Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013).

    Article  ADS  PubMed  Google Scholar 

  7. Mukamel, S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Jonas, D. M. Optical analogs of 2D NMR. Science 300, 1515–1517 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Stone, K. W. et al. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science 324, 1169–1173 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Kolano, C., Helbing, J., Kozinski, M., Sander, W. & Hamm, P. Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy. Nature 444, 469–472 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Zhang, C., Zhang, D. & Cheng, J.-X. Coherent Raman scattering microscopy in biology and medicine. Annu. Rev. Biomed. Eng. 17, 415–445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marino, A. M., Pooser, R. C., Boyer, V. & Lett, P. D. Tunable delay of Einstein–Podolsky–Rosen entanglement. Nature 457, 859–862 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Camacho, R. M., Vudyasetu, P. K. & Howell, J. C. Four-wave-mixing stopped light in hot atomic rubidium vapour. Nat. Photonics 3, 103–106 (2009).

    Article  ADS  CAS  Google Scholar 

  17. Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Weber, T. et al. Complete photo-fragmentation of the deuterium molecule. Nature 431, 437–440 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sansone, G., Pfeifer, T., Simeonidis, K. & Kuleff, A. I. Electron correlation in real time. ChemPhysChem 13, 661–680 (2011).

    Article  PubMed  Google Scholar 

  21. Bencivenga, F. et al. Nanoscale transient gratings excited and probed by extreme ultraviolet femtosecond pulses. Sci. Adv. 5, eaaw5805 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harrington, P. M., Mueller, E. J. & Murch, K. W. Engineered dissipation for quantum information science. Nat. Rev. Phys. 4, 660–671 (2022).

    Article  Google Scholar 

  23. Avisar, D. & Tannor, D. J. Complete reconstruction of the wave function of a reacting molecule by four-wave mixing spectroscopy. Phys. Rev. Lett. 106, 170405 (2011).

    Article  ADS  PubMed  Google Scholar 

  24. Schwickert, D. et al. Electronic quantum coherence in glycine molecules probed with ultrashort X-ray pulses in real time. Sci. Adv. 8, eabn6848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fulde, P. Electron Correlations in Molecules and Solids (Springer, 2012).

  26. Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 280–285 (2017).

    Article  CAS  Google Scholar 

  27. Wang, Y., Wu, H., McCandless, G. T., Chan, J. Y. & Ali, M. N. Quantum states and intertwining phases in kagome materials. Nat. Rev. Phys. 5, 635–658 (2023).

    Article  CAS  Google Scholar 

  28. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, 1990).

  29. Tanaka, S. & Mukamel, S. X-ray four-wave mixing in molecules. J. Chem. Phys. 116, 1877–1891 (2002).

    Article  ADS  CAS  Google Scholar 

  30. Popmintchev, D. et al. Near- and extended-edge x-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic supercontinua. Phys. Rev. Lett. 120, 093002 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Rouxel, J. R. et al. Hard X-ray transient grating spectroscopy on bismuth germanate. Nat. Photonics 15, 499–503 (2021).

    Article  ADS  CAS  Google Scholar 

  32. Morillo-Candas, A. S. et al. Time resolved hard X-ray/optical transient grating spectroscopy on a liquid jet. In Proc. 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2023).

  33. Ferrari, E. et al. All hard X-ray transient grating spectroscopy. Commun. Phys. 8, 257 (2025).

    Article  Google Scholar 

  34. Cavaletto, S. M., Keefer, D. & Mukamel, S. High temporal and spectral resolution of stimulated X-ray Raman signals with stochastic free-electron-laser pulses. Phys. Rev. X 11, 011029 (2021).

    CAS  Google Scholar 

  35. Belabas, N. & Jonas, D. M. Three-dimensional view of signal propagation in femtosecond four-wave mixing with application to the boxcars geometry. J. Opt. Soc. Am. B 22, 655–674 (2005).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Müller, A. et al. Photoionization of Ne atoms and Ne+ ions near the K edge: precision spectroscopy and absolute cross-sections. Astrophys. J. 836, 166 (2017).

    Article  ADS  Google Scholar 

  37. Williams, S., Rohlfing, E. A., Rahn, L. A. & Zare, R. N. Two-color resonant four-wave mixing: analytical expressions for signal intensity. J. Chem. Phys. 106, 3090–3102 (1997).

    Article  ADS  CAS  Google Scholar 

  38. Gel’mukhanov, F., Sałek, P., Privalov, T. & Ågren, H. Duration of x-ray Raman scattering. Phys. Rev. A 59, 380–389 (1999).

    Article  ADS  Google Scholar 

  39. Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Li, K., Labeye, M., Ho, P. J., Gaarde, M. B. & Young, L. Resonant propagation of x rays from the linear to the nonlinear regime. Phys. Rev. A 102, 053113 (2020).

    Article  ADS  CAS  Google Scholar 

  41. Frasinski, L. et al. Dynamics of hollow atom formation in intense X-ray pulses probed by partial covariance mapping. Phys. Rev. Lett. 111, 073002 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Hennies, F. et al. Resonant inelastic scattering spectra of free molecules with vibrational resolution. Phys. Rev. Lett. 104, 193002 (2010).

    Article  ADS  PubMed  Google Scholar 

  43. Lundberg, M. & Wernet, P. Resonant Inelastic X-ray Scattering (RIXS) Studies in Chemistry: Present and Future, 1–52 (Springer, 2019).

  44. Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    Article  ADS  CAS  Google Scholar 

  45. de Groot, F. M. et al. Resonant inelastic X-ray scattering. Nat. Rev. Methods Primers 4, 45 (2024).

    Article  Google Scholar 

  46. Guo, Z. et al. Experimental demonstration of attosecond pump–probe spectroscopy with an X-ray free-electron laser. Nat. Photonics 18, 691–697 (2024).

    Article  ADS  CAS  Google Scholar 

  47. Li, S. et al. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science 383, 1118–1122 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Meier, T., Schulze, A., Thomas, P., Vaupel, H. & Maschke, K. Signatures of Fano resonances in four-wave-mixing experiments. Phys. Rev. B 51, 13977–13986 (1995).

    Article  ADS  CAS  Google Scholar 

  49. Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Li, K. et al. Super-resolution stimulated X-ray Raman spectroscopy. Nature 643, 662–668 (2025).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eckbreth, A. C. BOXCARS: crossed-beam phase-matched cars generation in gases. Appl. Phys. Lett. 32, 421–423 (1978).

    Article  ADS  CAS  Google Scholar 

  52. Prior, Y. Three-dimensional phase matching in four-wave mixing. Appl. Opt. 19, 1741–1743 (1980).

    Article  ADS  CAS  Google Scholar 

  53. Vdovin, G. & van Goor, F. LightPipes for Python. Github https://opticspy.github.io/lightpipes/ (2023).

  54. Prat, E. et al. An X-ray free-electron laser with a highly configurable undulator and integrated chicanes for tailored pulse properties. Nat. Commun. 14, 5069 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pradervand, C. et al. A compact gas attenuator for the SwissFEL ATHOS beamline realized using additive manufacturing. J. Synchrotron Radiat. 30, 717–722 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Al Haddad, A. et al. High magnification optical imaging systems for the characterization of soft X-ray focii. J. Synchrotron Radiat. 32, 1479–1490 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boyd, R. W., Gaeta, A. L. & Giese, E. in Springer Handbook of Atomic, Molecular, and Optical Physics, 1097–1110 (Springer, 2023).

  58. Lutman, A. et al. Fresh-slice multicolour X-ray free-electron lasers. Nat. Photonics 10, 745–750 (2016).

    Article  ADS  CAS  Google Scholar 

  59. Reiche, S. & Prat, E. Two-color operation of a free-electron laser with a tilted beam. J. Synchrotron Radiat. 23, 869–873 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Prat, E. et al. Widely tunable two-color X-ray free-electron laser pulses. Phys. Rev. Res. 4, L022025 (2022).

    Article  CAS  Google Scholar 

  61. Wang, G., Dijkstal, P., Reiche, S., Schnorr, K. & Prat, E. Millijoule femtosecond X-ray pulses from an efficient fresh-slice multistage free-electron laser. Phys. Rev. Lett. 132, 035002 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Prior, Y. & Ben-Reuven, A. Nonimpact theory of four-wave mixing and intracollisional dynamics. Phys. Rev. A 33, 2362–2377 (1986).

    Article  ADS  CAS  Google Scholar 

  63. Rohringer, N. & London, R. Atomic inner-shell X-ray laser pumped by an X-ray free-electron laser. Phys. Rev. A 80, 013809 (2009).

    Article  ADS  Google Scholar 

  64. Pfeifer, T., Jiang, Y., Düsterer, S., Moshammer, R. & Ullrich, J. Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett. 35, 3441–3443 (2010).

    Article  ADS  PubMed  Google Scholar 

  65. Frasinski, L. J., Codling, K. & Hatherly, P. A. Covariance mapping: a correlation method applied to multiphoton multiple ionization. Science 246, 1029–1031 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support of S. Tiefenbacher and all of the groups involved in the operation of SwissFEL. The research leading to these results has received support from the Swiss National Science Foundation under grant agreement no. 200021-165550/1. The Maloja instrument received support from the Swiss National Science Foundation through R’Equip grant no. 206021-182988. The work of A.S.M.-C. was financed by the European Union’s Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement 884104 (PSI-FELLOW-III-3i).

Author information

Authors and Affiliations

Authors

Contributions

G.K. initiated and led the project. G.K. and A.S.M.-C. coordinated the project. G.K. and C.B. supervised the project and managed the funding acquisition. G.K. and T.P. developed the experimental concept and T.F. and A.C. provided advice on the experimental plan. K.S., A.A.-H., A.S., Z.S., N.Y., A.S.M.-C. and G.K. prepared the experimental beamline. E.P. prepared the X-ray pulses, in particular the set-up of the two-colour mode. All authors participated in the collection and interpretation of the experimental data. A.S.M.-C. led the data analysis, with support from S.A., J.K. and S.Z. A.S.M.-C., S.A. and G.K. developed the model and set up the required computational resources for the simulations. A.S.M.-C. and G.K. prepared the initial version of the manuscript. T.P., C.O., T.F., K.S. and A.A.-H. provided feedback on the initial draft. T.P., C.O. and T.F. provided feedback to the corresponding authors, A.S.M.-C. and G.K., in preparing the submitted manuscript.

Corresponding authors

Correspondence to Ana Sofia Morillo-Candas or Gregor Knopp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Laura Foglia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Beam propagation in the sample.

a, Calculation of the beam distribution at two positions before entering the gas cell. b,c, Propagation around the focus. c, Intensity distribution at the focus.

Extended Data Fig. 2 BoxCARS geometry.

a, Coordinate system and arrangement of beams on the mask used for the phase-matching calculation. The holes of the spatial mask have diameters of 1 mm and therefore cover a range of angles on the order 2Θmax − 2Θmin ≈ 0.04°. b, Phase-matching efficiency (sinc2 function in equation (4)) calculated for the case of ω1 = ω2 = 867 eV, a fixed θ = θ3 = θS, as a function of a varying ω3. The refractive index value is approximated to 1 and the propagation length is set as large as the gas cell, 8 mm, thus showing an unrealistic ‘worst-case scenario’ for phase mismatch. A shorter length value would increase the phase-matching energy/angle tolerance.

Extended Data Fig. 3 Spatial characterization of the XFWM signal.

To compare the signal beam with the incoming beams, we compare the images taken with a Ce-YAG screen located after the sample with and without the incoming beam open (that is, four holes or three holes opened in the spatial mask). a, Incoming beam opened in the signal direction (four holes opened in the mask). The photon energy was set at 876 eV. b, Same image as in panel a but scaled similarly as for the signal beam (see panel c) for comparison. c, XFWM signal detected with three holes opened in the spatial mask at the same photon energy, 876 eV. The signal beam profile is similar to the open incoming beam case. d, The XFWM signal vanishes when only two holes in the mask are opened, as expected from a FWM signal. The measurement in panel d was taken at 866.8 eV, around the maximum signal strength (see Fig. 1f). All measurements were done with the same gas pressure of 800 mbar. Each image is the average of 2,000 FEL shots.

Extended Data Fig. 4 Verification of the XFWM signal at 800 mbar.

Spectral maps recorded in the same experimental conditions but with different number and position of holes opened in the spatial mask. a, Standard measurement configuration, that is, three holes of the spatial mask open, only one incoming beam closed. b,c, Photon energy maps measured closing two of the incoming beams (two beams only reaching the sample). An indicative scheme of each mask and beam block configuration is shown as inset in the three 2D spectral maps. All measurements were done with the same gas pressure of 800 mbar and 25 fs r.m.s. pulse duration.

Extended Data Fig. 5 Verification of the XFWM signal at 200 mbar.

Spectral maps recorded in the same experimental conditions but with different number and position of holes opened in the spatial mask. a, Standard measurement configuration, that is, three holes of the spatial mask open, only one incoming beam closed. b,c, Photon energy maps measured closing two of the incoming beams. An indicative scheme of each mask and beam block configuration is shown as inset in the three 2D spectral maps. All measurements were done with the same gas pressure of 200 mbar and 25 fs r.m.s. pulse duration.

Extended Data Fig. 6 Pressure dependency of the XFWM spectra.

Photon energy scans for: 800 mbar (a), 400 mbar (b) and 200 mbar (c) measured with a pulse duration of 25 fs r.m.s. and plotted as spectral maps as a function of the incoming and detected photon energies.

Extended Data Fig. 7 Reference measurement, with no sample.

Photon energy map measured with three incoming beams and a gas pressure of 0.1 mbar.

Extended Data Fig. 8 Schematic energy diagrams for the XFWM processes considered in the model.

a, Two-colour XFWM (also valid for XSRS). b, Degenerate (for |f = |e) or quasi-degenerate processes. c, XTG process.

Extended Data Fig. 9 Intensity scans.

a, Average spectra measured for different FEL transmissions at 800 mbar, 876.6 eV FEL photon energy and 25 fs r.m.s. pulse duration. The black lines show the region of interest taken for the fit. b, Integrated signal within the range indicated by the vertical lines in panel a, plotted as a function of intensity (FEL transmission), together with the corresponding fit and a power-three law simulation. c, Spectra measured for different FEL transmissions at 800 mbar, 866.4 eV FEL photon energy and 25 fs r.m.s. pulse duration. The black lines show the region of interest taken for the fit shown in panel d. d, Integrated signal within the range indicated by the vertical lines in panel c, plotted as a function of intensity (FEL transmission), together with the corresponding fit and a power-three law simulation. e, Spectra measured for different FEL transmissions at 200 mbar, 866.8 eV FEL photon energy and 25 fs r.m.s. pulse duration. f, Integrated signal within the range indicated by the vertical lines in panel e, plotted as a function of intensity (FEL transmission), together with the corresponding fit and a power-three law simulation. The error is calculated as the standard deviation within all shots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morillo-Candas, A.S., Augustin, S., Prat, E. et al. Coherent nonlinear X-ray four-photon interaction with core-shell electrons. Nature 649, 590–596 (2026). https://doi.org/10.1038/s41586-025-09911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09911-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing