Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale dynamos driven by shear-flow-induced jets

Abstract

At every scale they occupy, magnetic fields affect various phenomena, including star formation, cosmic-ray transport, charged-particle acceleration, space weather, transport in planetary atmospheres and laboratory plasmas. These fields are often generated and sustained by turbulent flows in a process called the dynamo. In 1955, E. N. Parker parameterized the effects of small-scale turbulence to propose a mean-field dynamo theory1. The widely used theory reproduces observed large-scale fields but suffers from difficulty in tuning parameters as they are not justified from first principles: studies of turbulent flows show tangled magnetic fields, which are folded and fragmented into small-scale structures owing to shear-flow straining2,3. Here, considering a shear flow that is unstable and driven, we develop analytic theory and perform three-dimensional, advanced computer simulations of turbulence with up to 4,096 × 4,096 × 8,192 grid points, showing ab initio generation of quasi-periodic, large-scale magnetic fields. The generation occurs via the mean-vorticity effect—an additional mean-field dynamo process postulated4 in 1990. Crucial to this dynamo is the prior generation of large-scale three-dimensional jets, robustly produced as topologically protected and exact nonlinear solutions of the magnetohydrodynamic equations. The jet-driven dynamo applies to shear-driven laboratory and astrophysical systems. These include binary neutron star mergers5,6, where the reported dynamo probably operates on microsecond timescales to produce in milliseconds some of the strongest magnetic fields in the Universe7, providing signals for multi-messenger astronomy8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-time evolution of the MHD-KH dynamo, showing phases of turbulent generation of flows and magnetic fields.
Fig. 2: Properties of the KH-instability-induced jets and dynamo.
Fig. 3: Mechanism of the jet-driven ϒ-dynamo.
Fig. 4: Dominance of cross-helicity.

Similar content being viewed by others

Data availability

Any data needed to evaluate the conclusions of this article are present in the article or Methods or available via Zenodo at https://doi.org/10.5281/zenodo.17162239 (ref. 56). Simulation files, post-processing scripts, additional materials, data used to produce figures, and details of numerical implementation are available via Zenodo at https://doi.org/10.5281/zenodo.17162239 (ref. 56). Upon request, the corresponding author will share additional details on analysis methods.

References

  1. Parker, E. N. Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955).

    Article  MathSciNet  ADS  Google Scholar 

  2. Batchelor, G. K. & Proudman, I. The effects. of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Math. 7, 83–103 (1954).

    Article  MathSciNet  Google Scholar 

  3. Terry, P. W. Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72, 109–165 (2000).

    Article  ADS  Google Scholar 

  4. Yoshizawa, A. Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields. Phys. Fluids B 2, 1589–1600 (1990).

    Article  CAS  ADS  Google Scholar 

  5. Kiuchi, K., Cerdá-Durán, P., Kyutoku, K., Sekiguchi, Y. & Shibata, M. Efficient magnetic-field amplification due to the Kelvin–Helmholtz instability in binary neutron star mergers. Phys. Rev. D 92, 124034 (2015).

    Article  ADS  Google Scholar 

  6. Kiuchi, K., Reboul-Salze, A., Shibata, M. & Sekiguchi, Y. A large-scale magnetic field produced by a solar-like dynamo in binary neutron star mergers. Nat. Astron. 8, 298–307 (2024).

    Article  ADS  Google Scholar 

  7. Price, D. J. & Rosswog, S. Producing ultrastrong magnetic fields in neutron star mergers. Science 312, 719–722 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Tsokaros, A., Bamber, J., Ruiz, M. & Shapiro, S. L. Masking the equation-of-state effects in binary neutron star mergers. Phys. Rev. Lett. 134, 121401 (2025).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  9. Basu, A. et al. Detection of an ~20 kpc coherent magnetic field in the outskirt of merging spirals: the Antennae galaxies. Mon. Not. R. Astron. Soc. 464, 1003–1017 (2017).

    Article  CAS  ADS  Google Scholar 

  10. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961).

  11. Palenzuela, C. et al. Turbulent magnetic field amplification in binary neutron star mergers. Phys. Rev. D 106, 023013 (2022).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  12. Vasil, G. M. et al. The solar dynamo begins near the surface. Nature 629, 769 (2024).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Terry, P. W. in Zonal Jets (eds Galperin, B. & Read, P. L.) 181–193 (Cambridge Univ. Press, 2019).

  14. Hazra, G., Nandy, D., Kitchatinov, L. & Choudhuri, A. R. Mean field models of flux transport dynamo and meridional circulation in the Sun and stars. Space Sci. Rev. 219, 39 (2023).

    Article  ADS  Google Scholar 

  15. Gizon, L. et al. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science 368, 1469–1472 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Abramowicz, M. A., Lanza, A., Spiegel, E. A. & Szuszkiewicz, E. Vortices on accretion disks. Nature 356, 41–43 (1992).

    Article  ADS  Google Scholar 

  17. Chadayammuri, U. et al. Constraining merging galaxy clusters with X-ray and lensing simulations and observations: the case of Abell 2146. Mon. Not. R. Astron. Soc. 509, 1201–1216 (2021).

    Article  ADS  Google Scholar 

  18. Chadayammuri, U., ZuHone, J., Nulsen, P., Nagai, D. & Russell, H. Turbulent magnetic fields in merging clusters: a case study of Abell 2146. Mon. Not. R. Astron. Soc. 512, 2157–2170 (2022).

    Article  CAS  ADS  Google Scholar 

  19. Neronov, A. & Vovk, I. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73–75 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Brandenburg, A. & Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  21. Kulsrud, R. M. & Zweibel, E. G. On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008).

    Article  ADS  Google Scholar 

  22. Tobias, S. M. & Cattaneo, F. Shear-driven dynamo waves at high magnetic Reynolds number. Nature 497, 463–465 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Squire, J. & Bhattacharjee, A. Generation of large-scale magnetic fields by small-scale dynamo in shear flows. Phys. Rev. Lett. 115, 175003 (2015).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  24. Steenbeck, M., Krause, F. & Radler, K.-H. Z. Naturforsch. 21a, 369–376 (1966).

    Article  ADS  Google Scholar 

  25. Cattaneo, F. & Hughes, D. W. Nonlinear saturation of the turbulent α effect. Phys. Rev. E 54, R4532 (1996).

    Article  CAS  ADS  Google Scholar 

  26. Vainshtein, S. & Cattaneo, F. Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165–171 (1992).

    Article  ADS  Google Scholar 

  27. Brandenburg, A., Elstner, D., Masada, Y. & Pipin, V. Turbulent processes and mean-field dynamo. Space Sci. Rev. 219, 55 (2023).

    Article  ADS  Google Scholar 

  28. Pouquet, A., Frisch, U. & Leorat, J. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976).

    Article  ADS  Google Scholar 

  29. Howe, R., Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y. P. & Schou, J. Update on global helioseismic observations of the solar torsional oscillation. Res. Notes AAS 6, 261 (2022).

    Article  ADS  Google Scholar 

  30. Smith, K. M., Caulfield, C. P. & Taylor, J. R. Turbulence in forced stratified shear flows. J. Fluid Mech. 910, A42 (2021).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  31. Hathaway, D. H. The solar cycle. Living Rev. Sol. Phys. 39, 227 (2015).

    Google Scholar 

  32. Ebrahimi, F. & Blackman, E. G. Radially dependent large-scale dynamos in global cylindrical shear flows and the local Cartesian limit. Mon. Not. R. Astron. Soc. 459, 1422–1431 (2016).

    Article  ADS  Google Scholar 

  33. Elsässer, W. M. The hydromagnetic equations. Phys. Rev. 79, 183 (1950).

    Article  ADS  Google Scholar 

  34. Bendre, A. B., Subramanian, K., Elstner, D. & Gressel, O. Turbulent transport coefficients in galactic dynamo simulations using singular value decomposition. Mon. Not. R. Astron. Soc. 491, 3870–3883 (2020).

    Article  ADS  Google Scholar 

  35. Lecoanet, D. et al. A validated non-linear Kelvin–Helmholtz benchmark for numerical hydrodynamics. Mon. Not. R. Astron. Soc. 455, 4274–4288 (2016).

    Article  ADS  Google Scholar 

  36. Zhang, H. & Brandenburg, A. Solar kinetic energy and cross helicity spectra. Astrophys. J. Lett. 862, L17 (2018).

    Article  ADS  Google Scholar 

  37. Rahbarnia, K. et al. Direct observation of the turbulent EMF and transport of magnetic field in a liquid sodium experiment. Astrophys. J. 759, 80 (2012).

    Article  ADS  Google Scholar 

  38. Kaplan, E. J. et al. Reducing global turbulent resistivity by eliminating large eddies in a spherical liquid-sodium experiment. Phys. Rev. Lett. 106, 254502 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Mondal, T. & Bhat, P. Unified treatment of mean-field dynamo and angular-momentum transport in magnetorotational instability-driven turbulence. Phys. Rev. E 108, 065201 (2023).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  40. Taylor, J. B. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141 (1974).

    Article  ADS  Google Scholar 

  41. Zrake, J. & MacFadyen, A. I. Magnetic energy production by turbulence in binary neutron star mergers. Astrophys. J. Lett. 769, L29 (2013).

    Article  ADS  Google Scholar 

  42. Kunnumkai, K. et al. Detecting electromagnetic counterparts to LIGO/Virgo/KAGRA gravitational-wave events with DECam: neutron star mergers. Astrophys. J. 993, 15 (2025).

  43. Maggiore, M. et al. Science case for the Einstein Telescope. J. Cosmol. Astropart. Phys. 03, 050 (2020).

    Article  ADS  Google Scholar 

  44. Radice, D. General-relativistic large-eddy simulations of binary neutron star mergers. Astrophys. J. Lett. 838, L2 (2017).

    Article  ADS  Google Scholar 

  45. Mandal, K., Kosovichev, A. G. & Pipin, V. V. Helioseismic properties of dynamo waves in the variation of solar differential rotation. Astrophys. J. 973, 36 (2024).

    Article  CAS  ADS  Google Scholar 

  46. Yokoi, N. Unappreciated cross-helicity effects in plasma physics: anti-diffusion effects in dynamo and momentum transport. Rev. Mod. Plasma Phys. 7, e33 (2023).

    Article  ADS  Google Scholar 

  47. Chakraborty, S., Choudhuri, A. R. & Chatterjee, P. Why does the Sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102, 041102 (2009).

    Article  PubMed  ADS  Google Scholar 

  48. Yokoi, N., Schmitt, D., Pipin, V. & Hamba, F. A new simple dynamo model for stellar activity cycle. Astrophys. J. 824, 67 (2016).

    Article  ADS  Google Scholar 

  49. Pecora, F. et al. Relaxation of the turbulent magnetosheath. Mon. Not. R. Astron. Soc. 525, 67–72 (2023).

    Article  ADS  Google Scholar 

  50. Tripathi, B., Terry, P. W., Fraser, A. E., Zweibel, E. G. & Pueschel, M. J. Three-dimensional shear-flow instability saturation via stable modes. Phys. Fluids 35, 105151 (2023).

    Article  CAS  ADS  Google Scholar 

  51. Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D. & Brown, B. P. Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068 (2020).

    Article  CAS  Google Scholar 

  52. Ascher, U. M., Ruuth, S. J. & Spiteri, R. J. Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997).

    Article  MathSciNet  Google Scholar 

  53. Wang, D. & Ruuth, S. J. Variable step-size implicit-explicit linear multistep methods for time-dependent partial differential equations. J. Comput. Math. 26, 838–855 (2008).

    MathSciNet  Google Scholar 

  54. Mininni, P. D., Alexakis, A. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics II. Kinematic dynamo. Phys. Rev. E 72, 046302 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  55. Alexakis, A., Mininni, P. D. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72, 046301 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  56. Tripathi, B. et al. Codes, data, and additional materials for “Large-scale dynamos driven by shear-flow-induced jets”. Zenodo https://doi.org/10.5281/zenodo.17162239 (2025).

  57. Tripathi, B., Terry, P. W., Fraser, A. E., Zweibel, E. G. & Pueschel, M. J. Mechanism for sequestering magnetic energy at large scales in shear-flow turbulence. Phys. Plasmas 29, 070701 (2022).

    Article  CAS  ADS  Google Scholar 

  58. Marston, J. B., Conover, E. & Schneider, T. Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 1955–1966 (2008).

    Article  ADS  Google Scholar 

  59. Cope, L., Garaud, P. & Caulfield, C. The dynamics of stratified horizontal shear flows at low Péclet number. J. Fluid Mech. 903, A1 (2020).

    Article  CAS  ADS  Google Scholar 

  60. Pueschel, M. J., Jenko, F., Told, D. & Büchner, J. Gyrokinetic simulations of magnetic reconnection. Phys. Plasmas 18, 112102 (2011).

    Article  ADS  Google Scholar 

  61. Pueschel, M. J. et al. Magnetic reconnection turbulence in strong guide fields: Basic properties and application to coronal heating. Astrophys. J. Suppl. Ser. 213, 30 (2014).

    Article  ADS  Google Scholar 

  62. Gruzinov, A. V. & Diamond, P. H. Self-consistent mean field electrodynamics of turbulent dynamos. Phys. Plasmas 2, 1941–1946 (1995).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  63. Biglari, H., Diamond, P. H. & Terry, P. W. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2, 1–4 (1990).

    Article  CAS  ADS  Google Scholar 

  64. Townsend, A. A. The Structure of Turbulent Shear Flow 2nd edn (Cambridge Univ. Press, 1976).

  65. Verma, M. K. Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives (Cambridge Univ. Press, 2019).

  66. Reuter, K., Jenko, F. & Forest, C. B. Turbulent magnetohydrodynamic dynamo action in a spherically bounded von Kármán flow at small magnetic Prandtl numbers. N. J. Phys. 13, 073019 (2011).

    Article  Google Scholar 

  67. Baiotti, L., Giacomazzo, B. & Rezzolla, L. Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008).

    Article  ADS  Google Scholar 

  68. Most, E. R. & Quataert, E. Flares, jets, and quasiperiodic outbursts from neutron star merger remnants. Astrophys. J. Lett. 947, L15 (2023).

    Article  ADS  Google Scholar 

  69. Combi, L. & Siegel, D. M. Jets from neutron-star merger remnants and massive blue kilonovae. Phys. Rev. Lett. 131, 231402 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Olausen, S. A. & Kaspi, V. M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 212, 6 (2014).

    Article  ADS  Google Scholar 

  71. Bahramian, A. & Degenaar, N. Low-Mass X-ray Binaries (Springer Nature, 2022).

  72. Anderson, M. et al. Magnetized neutron-star mergers and gravitational-wave signals. Phys. Rev. Lett. 100, 191101 (2008).

    Article  PubMed  ADS  Google Scholar 

  73. Aguilera-Miret, R., Viganò, D. & Palenzuela, C. Universality of the turbulent magnetic field in hypermassive neutron stars produced by binary mergers. Astrophys. J. Lett. 926, L31 (2022).

    Article  CAS  ADS  Google Scholar 

  74. Charbonneau, P. Dynamo models of the solar cycle. Living Rev. Sol. Phys. 17, 4 (2020).

    Article  ADS  Google Scholar 

  75. Rüdiger, G., Küker, M. & Schnerr, R. S. Cross helicity at the solar surface by simulations and observations. Astron. Astrophys. 546, A23 (2012).

    Article  ADS  Google Scholar 

  76. Brandenburg, A. The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005).

    Article  ADS  Google Scholar 

  77. Yousef, T. A. et al. Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100, 184501 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Blackman, E. G. Mean magnetic field generation in sheared rotators. Astrophys. J. 529, 138–145 (2000).

    Article  ADS  Google Scholar 

  79. Brandenburg, A. & Urpin, V. Magnetic fields in young galaxies due to the cross-helicity effect. Astron. Astrophys. 332, L41–L44 (1998).

    ADS  Google Scholar 

  80. Elias-López, A., Del Sordo, F. & Viganò, D. Vorticity and magnetic dynamo from subsonic expansion waves. Astron. Astrophys. 677, A46 (2023).

    Article  Google Scholar 

  81. Hughes, D. W. & Proctor, M. R. E. Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102, 044501 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. R. Beattie, A. M. Beloborodov, A. Bhattacharjee, K. J. Burns, F. Ebrahimi, R. Habegger, D. Lecoanet, B. Miquel, E. R. Most, J. S. Oishi, S. Patil and B. Ripperda for discussions. This work used Anvil at Purdue University through allocation TG-PHY130027 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, which is supported by National Science Foundation grants 2138259, 2138286, 2138307, 2137603 and 2138296. We acknowledge staff support from Anvil and additional computing resources from Bridges-2. This material is based on work funded by the National Science Foundation (NSF) under award 2409206 and Department of Energy (grant number DE-SC0022257) through the DOE/NSF Partnership in Basic Plasma Science and Engineering. A.E.F. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-2402142.

Author information

Authors and Affiliations

Authors

Contributions

B.T. led the research, conceptualized the idea for the reported dynamo, developed analytic theory and schematic diagrams, modified numerical codes, performed simulations, acquired and analysed data, and wrote the first draft of the article. A.E.F. substantially contributed by helping develop research ideas, participating in the discussion of research methods, interpreting data, and editing and reviewing the article. P.W.T. substantially contributed by helping develop research ideas, participating in the discussion of research methods, interpreting data, and editing and reviewing the article. E.G.Z. substantially contributed by helping develop research ideas, participating in the discussion of research methods, interpreting data, and editing and reviewing the article. M.J.P. substantially contributed by helping develop research ideas, participating in the discussion of research methods, interpreting data, and editing and reviewing the article. R.F. substantially contributed by helping develop research ideas, participating in the discussion of research methods, interpreting data, and editing and reviewing the article.

Corresponding author

Correspondence to B. Tripathi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Snezhana Abarzhi, Giuseppina Nigro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Anisotropic growth rate spectrum of the KH instability, along with the spectra of energies.

The mean flow is directed along x and varies along z. The spectrum of the linear growth rate γKH of the KH instability is anisotropic. The growth rate is the largest around k = (±0.5, 0), which represents the 2D KH instability. The growth rate is zero for kx = 0 and ky ≠ 0. The square boxes in the upper half of the figure show time-averaged spectra of energies in horizontal field E(bx) and horizontal flow E(ux) (the contribution of the initial mean flow is removed). These spectra share the upper right-hand logarithmic colour bar, extending from yellow to black. The square boxes in the lower half of the figure show time-averaged spectra of energies in vertical field E(bz) and vertical flow E(uz). These share the lower right-hand linear colour bar, extending from white to blue. The center of each square box represents the wavenumber resolved in the nonlinear simulation (only a small part of the wavenumber range is shown, as the KH instability exists at large scales |ka|  1). The special square box centred at k = (0,0) is shared by four quadrants. All quantities are measured using a and U0.

Extended Data Fig. 2 Cascade of kinetic and magnetic energies from large scales to small scales.

Nonlinear energy flux through spectral space is measured in a simulation with 4096 × 4096 × 8192 grid points. Here, \(k={({k}_{x}^{2}+{k}_{y}^{2})}^{1/2}\). The energy flux is integrated over the z-axis. A constant energy flux in k-space indicates an inertial range. Energy injected externally to the mean flow (shown with a white-headed arrow on the left margin) is cascaded to small scales, as shown by \(\Pi \)uu, which measures energy flux due to transfer of energy between two velocity fluctuations. Magnetic-to-magnetic energy flux \(\Pi \)bb shows a prominent small-scale cascade over two decades of inertial range. This analysis shows that the ϒ-dynamo arising in KH-unstable shear flow is not due to an inverse cascade of energy. The ϒ-dynamo is due to energy transfer from large-scale jets to the mean field, as demonstrated in Extended Data Fig. 3.

Extended Data Fig. 3 Spectrum of nonlinear energy transfer to the mean magnetic field via turbulent field-line stretching.

This figure confirms that the large-scale velocity fluctuations give energy to the mean magnetic field (red)—and that the small-scale velocity fluctuations receive energy from the mean magnetic field (blue). The quantity shown is T(k″), which represents the rate of nonlinear energy transfer to the mean field \(\hat{b}\)x(kx = 0, ky = 0). Mathematically, T(k″) = \(\hat{b}\)x*(0,0) [\(\hat{{\bf{b}}}\)(k′) · \(\hat{u}\)x(k″)]z, where k″ = (kx″,ky″) is the horizontal wavenumber of the velocity u, and k′ = (kx′,ky′) is the horizontal wavenumber of the magnetic field b; the wavenumber-triad constraint imposes (0,0) = k′ + k″. The quantities \(\hat{{\bf{b}}}\)(k′) and \(\hat{u}\)x(k″) represent the horizontally Fourier-transformed coefficients of magnetic fields and velocity with wavenumbers k′ and k″, respectively; these quantities are retained in the physical domain z before integrating the transfer function along z. The quantity \(\hat{b}\)x*(0,0) is the horizontally-Fourier-transformed, complex-conjugated, x-directed mean magnetic field, whose energy is around two orders of magnitude larger than the y-directed mean field in the nonlinear phase. The mean field \(\hat{b}\)x(0,0) is inhomogeneous in z (as is the mean flow); the operation ·z averages the nonlinear transfer function in z. The transfer function is time-averaged over the saturated phase (t = 1000–4000). Of particular note is the extraordinary contribution of the large-scale jets, especially with wavenumber (kxa,kya) = (0,0.2), which contribute the largest in the mean-field generation. This is consistent with Fig. 3. The square box at kx″ = ky″ = 0 is white because the mean flow does not directly couple to the mean field in this system (the so-called \(\varOmega \)-effect32 is zero).

Extended Data Fig. 4 Comparison of three-dimensional unit vectors (shown with carets) of different components of the mean turbulent EMF \(\boldsymbol{\mathcal{E}}\) from a KH-instability-driven dynamo simulation in a and from the Madison Dynamo Laboratory Experiment37 in b.

With respect to \({\mathcal{E}}\), the β-diffusion term is anti-aligned, and the α-term is orthogonal (indicating the non-helical nature of dynamo). A near-identical orthogonal orientation of the α-term was measured in the Madison Dynamo Experiment37 in panel b. In the Madison Dynamo Experiment, the vorticity is considerably large in the radial direction38. This is consistent with the dominance of the observed radial EMF, suggesting the important role of the large-scale vorticity-effect4 in the turbulent EMF. Similarly, the ϒ-term in panel a is perfectly co-aligned with the mean EMF \({\mathcal{E}}\). Here, the novel jet-driven ϒ-dynamo, arising from the large-scale vorticity, is confirmed to be the source of the dynamo. Diagram in b reproduced with permission from ref. 37, AAS.

Extended Data Fig. 5 PDF of cosine of angle between u, b, ω(= × u), and j(= × b), in a simulation with 4096 × 4096 × 8192 grid points.

The turbulent flow and fields measured at the shear layer are non-helical and close to pure Alfvénic states (orange curve), which explains why the ϒ-effect dominates in the mean EMF. For the pure Alfvénic states, α is zero; β and ϒ are similar and are not impacted by the non-kinematic (flow-evolution) effect in the same manner as the α is (see last paragraph of “Analytic quasilinear EMF model” in Methods). A large-scale steady shear flow induces an “imbalanced” MHD turbulence (asymmetry of the orange curve) and thus drives the dynamo via the non-zero ϒ-coefficient. Similar PDFs of dominant cross-helicity and non-helical flows were recently detected in the magnetosheath turbulence observed by the Magnetospheric Multiscale Spacecraft49.

Extended Data Table 1 A list of commonly used symbols and meanings

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, B., Fraser, A.E., Terry, P.W. et al. Large-scale dynamos driven by shear-flow-induced jets. Nature 649, 848–852 (2026). https://doi.org/10.1038/s41586-025-09912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09912-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing