Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Four camera-type eyes in the earliest vertebrates from the Cambrian Period

Subjects

Abstract

Vertebrate vision is mainly accommodated by a pair of lateral image-forming camera-type eyes and is supplemented in non-mammalian vertebrates by a dorsal pineal complex (pineal and parapineal organs) functioning as photoreceptive and/or endocrine organs1. The pineal complex shares a common genetic and embryological basis with the lateral eyes, both derived from evaginations during the development of diencephalon2. Despite being widely heralded as the ‘third eye’ in crown vertebrates3, the nature of the pineal complex and its presumed visual capability in early vertebrates2 remain unknown. Here we describe two pigmented features situated between the lateral eyes in two species of myllokunmingids, the earliest known fossil vertebrates (approximately 518 million years ago), and interpret these as pineal/parapineal organs. In both myllokunmingid species, the pineal complex contains abundant melanin-containing melanosomes identical to those in the retinal pigment epithelium in the lateral eyes, together with a distinctive, regularly ovoid structure interpreted as a lens. Our results indicate that the lateral eyes and pineal complex in myllokunmingids probably functioned as camera-type eyes capable of image formation. Thus, we propose that the four camera-type eyes represent an ancestral vertebrate character, corroborating hypotheses about the deep homology between the eyes and pineal complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General morphology of the lateral eyes and pineal complex with their preserved melanosomes in two species of Myllokunmingidae from the Chengjiang biota.
Fig. 2: Negative ion ToF-SIMS spectra of melanosomes in the eyes of Chengjiang myllokunmingids.
Fig. 3: Preserved lens in the eyes and pineal complex of Cambrian vertebrates.
Fig. 4: Evolutionary scheme of the visual system in early vertebrates.

Similar content being viewed by others

Data availability

All supporting data of this study are available at Figshare (https://doi.org/10.6084/m9.figshare.29589761).

References

  1. Eakin, R. M. The Third Eye (Univ. of California Press,1973).

    Book  Google Scholar 

  2. Lamb, T. D. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retinal Eye Res. 36, 52–119 (2013).

    Article  CAS  Google Scholar 

  3. Janvier, P. Early Vertebrates (Clarendon,1996).

    Book  Google Scholar 

  4. Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life 1st edn (Murray, 1859).

    Book  Google Scholar 

  5. Benoit, J., Abdala, F., Manger, P. R. & Rubidge, B. S. The sixth sense in mammalian forerunners: variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic Eutheriodont Therapsids. Acta Palaeontol. Pol. 61, 777–789 (2016).

    Google Scholar 

  6. Lamb, T. D., Collin, S. P. & Pugh, E. N. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 8, 960–976 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clements, T. et al. The eyes of Tullimonstrum reveal a vertebrate affinity. Nature 532, 500–503 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Gabbott, S. E. et al. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye. Proc. Biol. Sci. 283, 20161151 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Conway Morris, S. & Caron, J.-B. A primitive fish from the Cambrian of North America. Nature 512, 419–422 (2014).

    Article  ADS  Google Scholar 

  10. Gabbott, S. E., Sansom, R. S. & Purnell, M. A. Systematic analysis of exceptionally preserved fossils: correlated patterns of decay and preservation. Palaeontology 64, 789–803 (2021).

    Article  Google Scholar 

  11. Braun, K. & Stach, T. Structure and ultrastructure of eyes and brains of Thalia democratica (Thaliacea, Tunicata, Chordata). J. Morphol. 278, 1421–1437 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Shu, D.-G. et al. Lower Cambrian vertebrates from south China. Nature 402, 42–46 (1999).

    Article  CAS  ADS  Google Scholar 

  13. Shu, D.-G. et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 526–529 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Hou, X.-G., Aldridge, R. J., Siveter, D. J., Siveter, D. J. & Feng, X.-H. New evidence on the anatomy and phylogeny of the earliest vertebrates. Proc. Biol. Sci. 269, 1865–1869 (2002).

    Article  Google Scholar 

  15. Zhao, J., Li, G.-B. & Selden, P. A. A poorly preserved fish-like animal from the Chengjiang Lagerstätte (Cambrian series 2, stage 3). Palaeogeogr. Palaeoclimatol. Palaeoecol. 520, 163–172 (2019).

    Article  Google Scholar 

  16. Zhang, X.-G. & Hou, X.-G. Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate Haikouichthys ercaicunensis. J. Evol. Biol. 17, 1162–1166 (2004).

    Article  PubMed  Google Scholar 

  17. Liu, Y. et al. Comparisons of the structural and chemical properties of melanosomes isolated from retinal pigment epithelium, iris and choroid of newborn and mature bovine eyes. Photochem. Photobiol. 81, 510–516 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Shawkey, M. D., D’Alba, L., Xiao, M., Schutte, M. & Buchholz, R. Ontogeny of an iridescent nanostructure composed of hollow melanosomes. J. Morphol. 276, 378–384 (2015).

    Article  PubMed  Google Scholar 

  19. D’Alba, L. & Shawkey, M. D. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99, 1–19 (2019).

    Article  PubMed  Google Scholar 

  20. Roy, A., Pittman, M., Kaye, T. G. & Saitta, E. T. Sediment-encased pressure–temperature maturation experiments elucidate the impact of diagenesis on melanin-based fossil color and its paleobiological implications. Paleobiology 49, 712–732 (2023).

    Article  Google Scholar 

  21. Agrup, G., Hansson, C., Rorsman, H. & Rosengren, E. The effect of cysteine on oxidation of tyrosine, dopa, and cysteinyldopas. Arch. Dermatol. Res. 272, 103–115 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Bush, W. D. et al. The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface. Proc. Natl Acad. Sci. USA 103, 14785–14789 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Simon, J. D. & Peles, D. N. The red and the black. Acc. Chem. Res. 43, 1452–1460 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Colleary, C. et al. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc. Natl Acad. Sci. USA 112, 12592–12597 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Briggs, D. E. G. & Williams, S. H. The restoration of flattened fossils. Lethaia 14, 157–164 (1981).

    Article  Google Scholar 

  26. Dearden, R. P. et al. The three-dimensionally articulated oral apparatus of a Devonian heterostracan sheds light on feeding in Palaeozoic jawless fishes. Proc. Biol. Sci. 291, 20232258 (2024).

    PubMed  PubMed Central  Google Scholar 

  27. Gagnier, P. Sacabambaspis janvieri, vertebre Ordovicien de Bolivie. I. Analyse morphologique. Ann. Paléontol. 79, 19–69 (1993).

    Google Scholar 

  28. Fritzsch, B. & Martin, P. R. Vision and retina evolution: how to develop a retina. IBRO Neurosci. Rep. 12, 240–248 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ekström, P. & Meissl, H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos. Trans. R. Soc. 358, 1679–1700 (2003).

    Article  Google Scholar 

  30. Janvier, P. & Arsenault, M. The anatomy of Euphanerops longaevus Woodward, 1900, an anaspid-like jawless vertebrate from the Upper Devonian of Miguasha, Quebec, Canada. Geodiversitas 29, 143–216 (2007).

    Google Scholar 

  31. Gai, Z.-K., Donoghue, P. C. J., Zhu, M., Janvier, P. & Stampanoni, M. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476, 324–327 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Meert, J. G., Levashova, N. M., Bazhenov, M. L. & Landing, E. Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Res. 34, 149–157 (2016).

    Article  ADS  Google Scholar 

  34. Nilsson, D.-E. Eye evolution and its functional basis. Vis. Neurosci. 30, 5–20 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vinther, J., Porras, L., Young, F. J., Budd, G. E. & Edgecombe, G. D. The mouth apparatus of the Cambrian gilled lobopodian Pambdelurion whittingtoni. Palaeontology 59, 841–849 (2016).

    Article  Google Scholar 

  36. Park, T.-Y. S. et al. A giant stem-group chaetognath. Sci. Adv. 10, eadi6678 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vinther, J. et al. A fossilised ventral ganglion reveals a chaetognath affinity for Cambrian nectocaridids. Sci. Adv. 11, eadu6990 (2025).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Paterson, J. R. et al. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480, 237–240 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Kasumyan, A. O. & Pavlov, D. S. Evolution of schooling behavior in fish. J. Ichthyol. 58, 670–678 (2018).

    Article  Google Scholar 

  40. Bok, M. J. & Buschbeck, E. K. in Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes (eds Buschbeck, E. K. & Bok, M. J.) 1–19 (Springer, 2023).

  41. Liu, C.-X. The Dark Forest (Chongqing Press, 2008).

    Google Scholar 

  42. Rincón Camacho, L. et al. The pineal complex: a morphological and immunohistochemical comparison between a tropical (Paracheirodon axelrodi) and a subtropical (Aphyocharax anisitsi) characid species. J. Morphol. 277, 1355–1367 (2016).

    Article  PubMed  Google Scholar 

  43. Dearden, R. P. et al. The oldest three-dimensionally preserved vertebrate neurocranium. Nature 621, 782–787 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Lindgren, J. et al. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506, 484–488 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Lindgren, J. et al. Molecular preservation of the pigment melanin in fossil melanosomes. Nat. Commun. 3, 824 (2012).

    Article  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We thank the students from the research group on problematic fossils and the early animal radiation event at Yunnan University for their assistance with fieldwork. We are grateful to M. Brazaeu for discussions on the presence of pineal eyes in early vertebrates; T. Zhao for comments on an early version of the paper; J.-B. Caron for providing images of M. walcotti; and T. Clements for providing images of Elonichthys peltigerus, Platysomus circularis and Bandringa rayi. We also thank J. Xie, D. Gao and J. Yang (Electron Microscopy Center of Yunnan University) for assistance with FIB and TEM analyses, as well as L. Sun (Electron Microscopy Center at Shanghai Jiaotong University) for ToF-SIMS analysis. This study was funded by the Yunnan Science & Technology Champion Project (202305AB350006) and the National Natural Science Foundation of China (42072019). P.C. acknowledges support from the Yunling Scholarship of the Yunnan Revitalization Talent Support Program.

Author information

Authors and Affiliations

Authors

Contributions

P.C., S.G. and J.V. conceived the project. P.C., X.L., S.Z. and F.W. collected the specimens. X.L. and S.Z. collected and analysed the data and, together with the other authors, wrote the first draft of the paper. X.L. and S.Z. made the figures. P.C. and X.X. secured funding. P.C., J.V., S.G. and X.X. supervised the project and edited the paper.

Corresponding author

Correspondence to Peiyun Cong  (丛培允).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Per Ahlberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Preservation of eyes and lens in selected fossil vertebrates.

a-b, Haikouichthys ercaicunensis (YNGIP-90285) showing lateral eyes (grey) and pineal eyes (green) with lens (blue). c, carbon element map of H. ercaicunensis (YNGIP-90285) head. d, H. ercaicunensis (YNGIP-90284), white arrows showing lens. e, H. ercaicunensis (YNGIP-90296). f, carbon element map of H. ercaicunensis (YNGIP-90296), yellow arrows indicating left pineal eye. g, (YNGIP-90283), eyes of H. ercaicunensis showing lens (white arrows). h, eyes of H. ercaicunensis showing lens (white arrows) (YNGIP-90289). i, carbon element map of the same region in h, note the absence of carbon in the lens (white arrows). j, m, lens in Elonichthys peltigerus (ROM56794). k, n, lens in Platysomus circularis (PF7333). l, o, lens in Bandringa rayi (ROM56789). (jo) image courtesy of Thomas Clements. Scale bars, 200 μm (af); 50 μm (gi); 5 mm (jo). Panels jo reproduced with permission from ref. 7, Springer Nature Limited.

Extended Data Fig. 2 Raman spectroscopic data across specimens supporting remains in the Chengjiang myllokunmingids eyes are organic material.

Note the consistency of Raman spectroscopic data across specimens, which are distinct from the negative control of the Chengjiang sediment. D and G, feature bands of organic materials.

Extended Data Fig. 3

X-ray photoelectron spectroscopy (XPS) analysis of carbonaceous remains in the eyes of the Chengjiang myllokunmingids (YNGIP 90291).

Extended Data Fig. 4 The frequency distribution and Gaussian fitting of the length-to-width ratio of the melanosomes in the eyes of the Chengjiang vertebrates.

a, Haikouichthys ercaicunensis (n = 549). b, myllokunmingid sp. (n = 500). n refers to the measured number of melanosome microbodies. xc: peak centre value; R2: regression coefficient.

Source Data

Extended Data Fig. 5 The frequency distribution and Gaussian fitting of the length-to-width ratio of the melanosomes in the lateral and pineal eyes of Haikouichthys ercaicunensis.

a, pineal eyes (n = 250). b, lateral eyes (n = 549). n refers to the measured number of melanosome microbodies. xc: peak centre value; R2: regression coefficient.

Source Data

Extended Data Fig. 6 SEM, FIB and TEM images of the melanosome in the eyes of Haikouichthys ercaicunensis.

a-b, Backscattered electron image (SEM) of H. ercaicunensis head. c-d, Secondary electron image (SEM) of the melanosome in the eyes (arrowed in a) of H. ercaicunensis. e, f, FIB slicing of the eye (arrowed in a) of H. ercaicunensis. g, i, TEM images of single melanosomes microbody, with enlarged details in i (boxed in g). h, Carbon (C, red), silicon (Si, blue), and iron (Fe, green) elemental map of a single melanosome as shown in g. Scale bars, 500 μm (a); 20 μm (b); 2 μm (c-f); 100 nm (g, h); 20 nm (i).

Extended Data Fig. 7 Detailed PCA result of negative ToF–SIMS spectra.

a, the PCA result of 54 negative secondary ion peaks obtained from the following samples: fresh melanin, artificially matured melanin (aged for 24 h at 200 °C/250 bar and 250 °C/250 bar), fossil melanin, various melanin-negative controls, and specimens of Chengjiang myllokunmingids. b, Comparison of ToF-SIMS full spectra between Haikouichthys eyes (top) with a negative control of the host sediment (bottom) from the Chengjiang biota. c, loadings for principal component analysis (panel a and Fig. 2a), showing the contribution of specific ion fragments to the positioning of specimens along the x-axis (PC1) and y-axis (PC2), respectively. d, the list of details of the numbered samples in a.

Extended Data Fig. 8 Swarming behaviour of myllokunmingid sp.

a, YNGIP-90293, b, YNGIP-90292, with individuals occurring in dense aggregations. Scale bar, 2 cm (a), 1 cm (b).

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Zhang, S., Cong, P. et al. Four camera-type eyes in the earliest vertebrates from the Cambrian Period. Nature (2026). https://doi.org/10.1038/s41586-025-09966-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-025-09966-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing