Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxygen-free metabolism in the bird inner retina supported by the pecten

Abstract

Neural tissues are exceptionally sensitive to oxygen deprivation and rely on a dense network of blood vessels to support their extraordinarily high metabolic demands for oxygen, nutrients and clearance of waste products1,2,3,4. In birds, one of the metabolically most demanding neural tissue—the retina—lacks internal blood vessels5,6. This raises the question of how such a metabolically demanding neural tissue can function without blood perfusion. Here we show that, while the photoreceptor outer segments in the outer retina have access to oxygen, the inner bird retina operates under chronic anoxia, supported by anaerobic glycolysis in the retinal neurons. We provide evidence that the pecten oculi—a uniquely vascularized structure in the vitreous humour of birds, the function of which has been debated for centuries5,6,7,8,9—supplies the anoxic inner retina with glucose and removes lactic acid. We suggest that the pecten’s metabolic support of the bird retina’s anoxia tolerance enabled first the evolution of a thick cell-dense, avascular retina, which secondarily served as an exaptation enabling retinal function during high-altitude migrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxygen diffusion dynamics in the bird retina.
Fig. 2: Anaerobic glycolysis in the inner, anoxic bird retina.
Fig. 3: Metabolite and CO2 exchange of the pecten.
Fig. 4: Müller-cell-mediated nutrient exchange.
Fig. 5: Co-evolution of retinal anoxia tolerance and morphology.

Similar content being viewed by others

Data availability

The raw and aligned spatial and scRNA-seq data generated here are available at the Gene Expression Omnibus (GEO) (GSE309408). Comparative datasets were from lamprey (GSE236005), zebrafish (GSE237214), anole (GSE237205), chicken (GSE159107), opossum (GSE237207), ferret (GSE237203), pig (GSE237209), sheep (GSE237211), cow (GSE237202), shrew (GSE237213), marmoset (GSE237206), squirrel (GSE237212), Peromyscus (GSE237208), Phabdomys (GSE237210), macaque (PRJCA002731) and mouse (SCP2560). Processed bird and reptile data are available online (https://linlab.au.dk/Damsgaard_lab/CETA/). Imaging data of the micro-CT imaged zebra finch and green anole samples are available at Figshare61 (https://doi.org/10.6084/m9.figshare.30608753.v3). Source data are provided with this paper.

Code availability

No custom code was used in this study. All analyses were performed using standard software packages as described in the Methods.

References

  1. Erecińska, M. & Silver, I. A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).

    Article  PubMed  Google Scholar 

  2. Tuo, Q. Z., Zhang, S. T. & Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 42, 259–305 (2022).

    Article  PubMed  Google Scholar 

  3. Radak, D. et al. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol. 15, 115–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Meyer, D. B. in The Visual System in Vertebrates. Handbook of Sensory Physiology Vol. 7 (ed. Crescitelli, F.) (Springer, 1977).

  6. Walls, G. L. The Vertebrate Eye and its Adaptive Radiation (Cranbrook Institute of Science, 1942).

  7. Mann, I. C. The function of the pecten. Br. J. Ophthalmol. 8, 209 (1924).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brach, V. The functional significance of the avian pecten: a review. Condor 79, 321–327 (1977).

    Article  Google Scholar 

  9. Borrichius, O. & Coringius, H. Hermetis, Ægyptiorum, et Chemicorum Sapientia (Petri Hauboldi, 1674).

  10. Caprara, C. & Grimm, C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog. Retin. Eye Res. 31, 89–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Kaur, C., Foulds, W. S. & Ling, E.-A. Hypoxia-ischemia and retinal ganglion cell damage. Clin. Ophthalmol. 2, 879–889 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park, T. J. et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356, 307–311 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Ames, A. III Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Can. J. Physiol. Pharmacol. 70, S158–S164 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Nickla, D. L. & Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 29, 144–168 (2010).

    Article  PubMed  Google Scholar 

  15. Country, M. W. Retinal metabolism: a comparative look at energetics in the retina. Brain Res. 1672, 50–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Damsgaard, C. & Country, M. W. The opto-respiratory compromise: balancing oxygen supply and light transmittance in the retina. Physiology 37, 101–113 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Franze, K. et al. Muller cells are living optical fibers in the vertebrate retina. Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chase, J. The evolution of retinal vascularization in mammals: a comparison of vascular and avascular retinae. Ophthalmology 89, 1518–1525 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Damsgaard, C. et al. Retinal oxygen supply shaped the functional evolution of the vertebrate eye. eLife 8, e52153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buttery, R. G., Hinrichsen, C. F. L., Weller, W. L. & Haight, J. R. How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vis. Res. 31, 169–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Tommasini, D., Yoshimatsu, T., Puthussery, T., Baden, T. & Shekhar, K. Comparative transcriptomic insights into the evolution of vertebrate photoreceptor types. Curr. Biol. 35, 2228–2239 (2025).

    Article  CAS  PubMed  Google Scholar 

  22. Hurley, J. B. Retina metabolism and metabolism in the pigmented epithelium: a busy intersection. Ann. Rev. Vis. Sci. 7, 665–692 (2021).

    Article  Google Scholar 

  23. Potier, S., Mitkus, M. & Kelber, A. Visual adaptations of diurnal and nocturnal raptors. Semin. Cell Dev. Biol. 106, 116–126 (2020).

    Article  PubMed  Google Scholar 

  24. Dollery, C. T., Bulpitt, C. J. & Kohner, E. M. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest. Ophthalmol. Vis. Sci. 8, 588–594 (1969).

    CAS  Google Scholar 

  25. Pawlik, G., Rackl, A. & Bing, R. J. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res. 208, 35–58 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Black, J. E. & Greenough, W. T. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 12, 110–119 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Black, C. P. & Tenney, S. M. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol. 39, 217–239 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Christensen, N. K., Beedholm, K. & Damsgaard, C. Short communication: maintained visual performance in birds under high altitude hypoxia. Comp. Biochem. Physiol. A 296, 111691 (2024).

    Article  CAS  Google Scholar 

  29. Linsenmeier, R. A. & Braun, R. D. Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J. Gen. Physiol. 99, 177–197 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Yu, D.-Y., Cringle, S. J., Alder, V. A., Su, E. & Yu, P. K. Intraretinal oxygen distribution and choroidal regulation in the avascular retina of guinea pigs. Am. J. Physiol. 270, H965–H973 (1996).

    CAS  PubMed  Google Scholar 

  31. Raleigh, J. A. et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58, 3765–3768 (1998).

    CAS  PubMed  Google Scholar 

  32. Butler, P. & Taylor, E. Responses of the respiratory and cardiovascular systems of chickens and pigeons to changes in PaO2 and PaCO2. Respir. Physiol. 21, 351–363 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. Shams, H. & Scheid, P. Respiration and blood gases in the duck exposed to normocapnic and hypercapnic hypoxia. Respir. Physiol. 67, 1–12 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Halestrap, A. P. The SLC16 gene family–structure, role and regulation in health and disease. Mol. Aspects Med. 34, 337–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Peynshaert, K., Devoldere, J., Minnaert, A.-K., De Smedt, S. C. & Remaut, K. Morphology and composition of the inner limiting membrane: species-specific variations and relevance toward drug delivery research. Curr. Eye Res. 44, 465–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

  39. Mann, I. C. On the development of the fissural and associated regions in the eye of the chick, with some observations on the mammal. J. Anat. 55, 113 (1921).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wingstrand, K. G. & Munk, O. The Pecten Oculi of the Pigeon with Particular Regard to its Function (Kommissionaer: Munksgaard, 1965).

  41. Jasiński, A. Fine structure of capillaries in the pecten oculi of the sparrow, Passer domesticus. Zeitschr. Zellforsch. Mikrosk. Anat. 146, 281–292 (1973).

    Article  Google Scholar 

  42. Kauth, H. & Sommer, H. The ferment carbonic anhydrase in the animal body. IV. On the function of the pecten in the bird’s eye. Biol. Zbl 72, 196–209 (1953).

    Google Scholar 

  43. Pettigrew, J. D., Wallman, J. & Wildsoet, C. F. Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature 343, 362–363 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Davson, H. & Luck, C. A comparative study of the total carbon dioxide in the ocular fluids, cerebrospinal fluid, and plasma of some mammalian species. J. Physiol. 132, 454 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brach, V. The effect of intraocular ablation of the pecten oculi of the chicken. Invest. Ophthalmol. Vis. Sci. 14, 166–168 (1975).

    CAS  Google Scholar 

  46. Akhlagh Moayed, A., Hariri, S., Choh, V. & Bizheva, K. Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system. J. Biomed. Opt. 17, 016011 (2012).

    Article  ADS  PubMed  Google Scholar 

  47. Greunz, E. M. et al. Elimination of intracardiac shunting provides stable gas anesthesia in tortoises. Sci. Rep. 8, 17124 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Williams, C. J., Malte, C. L., Malte, H., Bertelsen, M. F. & Wang, T. Ectothermy and cardiac shunts profoundly slow the equilibration of inhaled anaesthetics in a multi-compartment model. Sci. Rep. 10, 17157 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kristensen, L. et al. Effect of atropine and propofol on the minimum anaesthetic concentration of isoflurane in the freshwater turtle Trachemys scripta (yellow-bellied slider). Vet. Anaesth. Analg. 50, 180–187 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Yu, D. Y. & Cringle, S. J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 20, 175–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Damsgaard, C. et al. A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina. eLife 9, e58995 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Busk, M. et al. PET imaging of tumor hypoxia using 18F-labeled pimonidazole. Acta Oncol. 52, 1300–1307 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Dong, M. et al. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief. Bioinform. 22, 416–427 (2020).

    Article  PubMed Central  Google Scholar 

  55. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 624, 415–424 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, J. et al. Comprehensive single-cell atlas of the mouse retina. iScience 27, 109916 (2024).

  59. Wang, J. et al. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat. Commun. 15, 10761 (2024).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Damsgaard, C. et al. Data for ‘Oxygen-free metabolism in the bird inner retina supported by the pecten’. Figshare https://doi.org/10.6084/m9.figshare.30608753.v3 (2025).

Download references

Acknowledgements

We thank R. Buchanan, C. Wandborg, S. Olsen and H. Meldgaard for help with animal handling; T. Mikkelsen for help with cryosectioning; J. Orthmann for technical assistance; J. J. Forst for help with one zebra finch dissection; the staff at the Core Facility Fluorescence Microscopy of the Carl von Ossietzky Universität Oldenburg, AU core facilities for bioimaging and flow cytometry; L. B. Pedersen for CO2 sensor construction, E. E. Petersen for laboratory assistance, J. B. Hurley, M. Bayley, M. Andersen and J. S. Theriault for manuscript feedback; and D. Altshuler, E. Gutierrez and L. Østergaard for project feedback. Funding was from the Carlsberg Foundation (C.D., CF18-0658; H.L., CF21-0605), the Lundbeck Foundation (C.D., R346-2020-1210; J.R.N., R480-2024-960), the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (no. 754513) (C.D.), Aarhus University Research Foundation (C.D.), the Villum Foundation (C.D.), the Grundfos Foundation (N.P.R.), the Novo Nordisk Foundation (C.D., NNF24OC0095924; C.P.H.E., NFF20OC0063964), the Velux Foundations (H.L., 00022458), Deutsche Forschungsgemeinschaft (DFG, 395940726, SFB 1372 ‘Magnetoreception and navigation in vertebrates’; and 533653176, EXC 3051 ‘NaviSense’ to H. Mouritsen and K.D.), and the European Research Council (under the European Union’s Horizon 2020 research and innovation programme, grant agreement no. 810002, Synergy grant: QuantumBirds awarded to H. Mouritsen).

Author information

Authors and Affiliations

Authors

Contributions

C.D. proposed the study. C.D., M.V.S., C.J.A.W., H. Malte, M.B., K.D., M.V., H. Mouritsen, J.K., L.L., N.K.I., T.W., H.L. and J.R.N. designed the experiments. C.D., M.V.S., C.J.A.W., C.K.K. and A.H.K. measured retinal gases. M.V.S., M.B. and K.D. performed tissue staining and imaging. H. Malte performed oxygen diffusion modelling. C.D. and M.B. performed autoradiography. C.D. performed spatial and single-cell transcriptomics. C.K.K. and A.V.G.T.M. measured metabolite levels. C.D., A.S.S.R., J.S.T. and H.L. performed micro-CT imaging. C.D., M.B., C.P.H.E., N.P.R., M.V., H. Mouritsen, J.K., L.L., T.W., H.L. and J.R.N. contributed essential resources, infrastructure and funding. C.D., M.V.S., H. Malte, C.K.K., M.B., K.D., H. Mouritsen, K.S.J., L.L. and H.L. analysed the experimental data. C.D. prepared the paper with input from all of the authors.

Corresponding author

Correspondence to Christian Damsgaard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Michael Berenbrink, Tom Baden, Rui Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Structure of the avian pecten oculi and reptilian conus papillaris.

a, transversal virtual slices and maximum intensity projections (MIP) of diffusible iodine-based contrast-enhanced micro-CT images showing the pecten oculi of the avian zebrafinch (Taeniopygia guttata) (left, n = 1) and the conus papillaris of reptilian green anole (Anolis carolinensis) (right, n = 1). While the pecten oculi presents as a feather-like structure with a large surface area, the conus papillaris is a smaller cone-like structure. b, model of the arterial blood supply to the pecten oculi in the zebra finch from vascular casting followed by micro-CT imaging. The arterial blood supply to the pecten oculi derives from the ophthalmotemporal artery originating in the rete opthalmicum, which is ultimately supplied by the common carotid artery. The fully interactive model (rotate, pan, zoom, toggle layers, adjust transparency) is provided separately as Supplementary 3D Model 1 (3D PDF).

Extended Data Fig. 2 Spatial distribution of redox metabolism in the bird retina.

a, Modelled in vivo \({{p}}_{{{\rm{O}}}_{2}}\) mapped onto tissue sections. b-d, Tissue mapping of aggregated gene expression scores for genes associated with glycolysis, pentose phosphate pathway, and glutathione metabolism shows that glycolysis is not linked to redox metabolism (n = 4). e-h, This conclusion was supported by uniform expression patterns of SOD1, SOD2, CAT, and TXN. Expression levels of individual genes represent unitless variance-stabilized expression values, adjusted for sequencing depth across spots. Pathway scores are unitless enrichment scores calculated from the average expression of all genes in a pathway relative to a set of randomly selected control genes.

Extended Data Fig. 3 Single cell atlas of zebra finch retinal cells.

Gene expression markers of the major retinal cell types in zebra finches (n = 6 birds, 40,496 cells). Dots are colour-coded for average expression levels, and dot sizes are proportional to the proportion of cells of each cell type with non-zero expression.

Source data

Extended Data Fig. 4 Metabolite transport expression in vertebrate Müller glia cells.

a, Phylogenetic relationship among species included in the analysis. b, gene expression pattern of key metabolite transporter genes in Müller glia cells shows high expression of GLUT1 and MCT1 in bird Müller glia cells. Dots are colour-coded for average expression levels, and dot sizes are proportional to the proportion of cells of each cell type with non-zero expression. Data are from this study (zebra finch) and published studies57,58,59.

Source data

Extended Data Fig. 5 Vimentin is a marker for Müller cells in the zebra finch retina.

a, Sox2 labels Müller cell nuclei which show a distinct shape and are surrounded by GluR1 positive membranes (arrowheads), spanning from the nerve fibre layer to the end of the outer nuclear layer. b, GluR1 and vimentin almost fully colocalize in the zebra finch retina (arrowheads), establishing vimentin as a marker for Müller cells in this species. For these stainings, the retina was fixed in 2% paraformaldehyde. Areas marked by rectangles are shown in higher magnification. GCL, ganglion cell layer; INL/IPL, inner nuclear/plexiform layer; NFL, nerve fibre layer; ONL, outer nuclear layer. Scale bars: 20 µm; higher magnification images: 10 µm. n = 2.

Extended Data Fig. 6 Specificity of GLUT1 and MCT1 antibodies.

a, An anti-GLUT1 antibody from guinea pig (Synaptic Systems, 419 005), which targeted a different epitope in the GLUT1 protein as the one used in Fig. 4b (Alomone, AGT-021), also labelled Müller glia cells (visualized by GluR1) with prominent GLUT1 staining in Müller cell endfeet. b, Pre-adsorption of the GLUT1 antibody (Alomone) with the immunization peptide eliminated the Müller cell staining, leaving a weak staining in the outer plexiform layer (asterisk) which is likely unspecific. Secondary antibody control for the GLUT1 staining (obtained by omitting the primary antibody). c, Pre-adsorption of the MCT antibody (Alomone) with the immunization peptide eliminated the Müller cell staining and the nucleic staining in the inner nuclear and ganglion cell layer. Blastp analysis revealed a homology of the antibody to Sox12 and Sox11 which are expressed in both layers in the chicken retina (data based on Yamagata et al., 2021). Secondary antibody control for the MCT1 staining (obtained by omitting the primary antibody). Please note that confocal stacks for GLUT1/MCT1, pre-adsorbed antibodies, and secondary antibody controls were scanned and processed identically. Images were not filtered. GCL, ganglion cell layer; INL/IPL, inner nuclear/plexiform layer; NFL, nerve fibre layer; ONL, outer nuclear layer. Scale bars: 20 µm. n = 2.

Extended Data Fig. 7 Similar gene expression profiles of the conus and pecten.

a) Integration and cluster analysis of gene expression spots group ocular tissues from zebra finches (b, n = 4), pigeons (c, n = 1), chickens (d, n = 1), and anoles (e, n = 2) into 17 gene expression clusters. Mapping the gene expression clusters back to tissue morphology identifies distinct gene expression clusters of the pecten/conus, retina, and optical nerve head.

Extended Data Fig. 8 Transcript distribution in the birds’ pecten and anole conus.

a,c,e,g,i,k,m,o,q,s,u,x, Tissue sections of zebra finch (n = 4), pigeon (n = 1), chicken (n = 1), and green anole (n = 1) eyes colour-coded for expression of the glucose transporter GLUT1 (SLC2A1; a,g,m,s), monocarboxylate transporter MCT1 (SLC16A1; c,i,o,u) and carbonic anhydrase 4 (CA4; e,k,q,x). Expression levels represent unitless variance-stabilized expression values, adjusted for sequencing depth across spots. b,d,f,h,j,l,n,p,r,t,v,y, Violin plots showing variance-stabilized expression levels across gene-expression spots covering the pecten (birds) or conus (anole) (red) and the neural retina (yellow) for the corresponding genes. Note that panels for the zebra finch in a-f are from Fig. 3 and are included here for comparison with pigeon, chicken, and anoles.

Source data

Extended Data Fig. 9 Model fits for estimating retinal oxygen consumption.

Measured (blue points) and modelled (red lines) oxygen partial pressure profiles were used to estimate the uninhibited and realized oxygen consumption rates of the retina and the oxygen fluxes from the choroid and the pecten. The 11 panels show the data from 11 individual anaesthetized zebra finches measured during ventilation with air. Data are plotted as a function of eye radius, where r = 0.18 cm represents the position of the choroid.

Extended Data Table 1 Summary of species-specific anaesthesia and instrumentation

Supplementary information

Supplementary Information

Supplementary Information 1–3, Supplementary Fig. 1 and Supplementary references. Detailed descriptions of the oxygen diffusion modelling (finite element calculations, boundary conditions, and O2 flux estimates), the construction, calibration and application of Clark-type CO2 microsensors, and a representative flow cytometry dot plot.

Reporting Summary

Supplementary Data 1

Interactive micro-CT model of the arterial blood supply to the zebra finch pecten oculi. Users can rotate, pan, zoom and toggle layers, including adjusting transparency. Requires desktop Adobe Acrobat/Reader with 3D content enabled.

Peer Review file

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damsgaard, C., Skøtt, M.V., Williams, C.J.A. et al. Oxygen-free metabolism in the bird inner retina supported by the pecten. Nature (2026). https://doi.org/10.1038/s41586-025-09978-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-025-09978-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing