Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of a superfluid-to-insulator transition of bilayer excitons

Abstract

One of the most remarkable properties associated with Bose–Einstein condensation (BEC) is superfluidity, in which the system exhibits zero viscosity and flows without dissipation. The superfluid phase has been observed in wide-ranging bosonic systems spanning naturally occurring quantum fluids, such as liquid helium, to engineered platforms such as bilayer excitons and cold atom systems1,2,3,4. Theoretical works have proposed that interactions could drive the BEC ground state into another exotic phase that simultaneously exhibits properties of both a crystalline solid and a superfluid—termed a supersolid5,6,7,8. Identifying a material system, however, that hosts the predicted BEC solid phase, driven purely by interactions and without imposing an external lattice potential, has remained unknown9,10,11. Here we report observation of a superfluid-to-insulator transition in the layer-imbalanced regime of bilayer magnetoexcitons. Mapping the transport behaviour of the bilayer condensate as a function of density and temperature suggests that the insulating phase is an ordered state of dilute excitons, stabilized by dipole interactions. The insulator melts into a recovered superfluid on increasing the temperature, which could indicate that the low-temperature solid is also a quantum coherent phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transport signatures of the exciton condensate.
Fig. 2: Tuning inter-exciton spacing e with layer imbalance.
Fig. 3: An exciton insulator at large Δν.
Fig. 4: A first-order re-entrant transition between the exciton solid and superfluid phases.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data are available from the corresponding author upon request.

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    Article  CAS  ADS  Google Scholar 

  4. Halperin, B. I. & Jain, J. K. Fractional Quantum Hall Effects: New Developments (World Scientific, 2020).

  5. Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).

    Article  CAS  ADS  Google Scholar 

  6. Andreev, A. F. & Lifshits, I. M. Quantum theory of defects in crystals. Zh. Eksp. Teor. Fiz. 56, 2057–2068 (1969).

    CAS  Google Scholar 

  7. Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article  CAS  ADS  Google Scholar 

  8. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  CAS  ADS  Google Scholar 

  9. Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    CAS  Google Scholar 

  11. Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar 

  12. Lozovik, Y. E. & Yudson, V. I. Feasibility of superfluidity of paired spatially separated electrons and holes: a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).

    ADS  Google Scholar 

  13. Pogrebinsky, M. B. Mutual drag of carriers in a semiconductor-insulator-semiconductor system. Fiz. Tekh. Poluprovodn. 11, 637–644 (1977).

    Google Scholar 

  14. Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Li, J. I. A. et al. Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898–903 (2019).

    Article  CAS  Google Scholar 

  16. Liu, X. et al. Interlayer fractional quantum Hall effect in a coupled graphene double layer. Nat. Phys. 15, 893–897 (2019).

    Article  CAS  ADS  Google Scholar 

  17. Zhang, N. J. et al. Excitons in the fractional quantum Hall effect. Nature 637, 327–332 (2025).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Article  CAS  Google Scholar 

  19. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article  CAS  Google Scholar 

  20. Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Science 388, 274–278 (2025).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Science 388, 278–283 (2025).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    Article  ADS  Google Scholar 

  23. Meisel, M. W. Supersolid 4He: an overview of past searches and future possibilities. Phys. B Condens. Matter 178, 121–128 (1992).

    Article  CAS  ADS  Google Scholar 

  24. Vu, D. & Das Sarma, S. Excitonic phases in a spatially separated electron-hole ladder model. Phys. Rev. B 108, 235158 (2023).

    Article  CAS  ADS  Google Scholar 

  25. Hu, Z. & Yang, K. Exciton crystal melting and destruction by disorder in a bilayer quantum Hall system with a total filling factor of one. Phys. Rev. B 110, 195307 (2024).

    Article  CAS  ADS  Google Scholar 

  26. Chui, S. T., Wang, N. & Wan, C. Y. Quantum exciton solid in bilayer two-dimensional electron-hole systems. Phys. Rev. B 102, 125420 (2020).

    Article  CAS  ADS  Google Scholar 

  27. Yoshioka, D. & MacDonald, A. H. Double quantum well electron-hole systems in strong magnetic fields. J. Phys. Soc. Jpn 59, 4211–4214 (1990).

    Article  ADS  Google Scholar 

  28. Joglekar, Y. N., Balatsky, A. V. & Sarma, S. D. Wigner supersolid of excitons in electron-hole bilayers. Phys. Rev. B 74, 233302 (2006).

    Article  ADS  Google Scholar 

  29. Zarenia, M., Neilson, D. & Peeters, F. M. Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: charge density waves and coupled Wigner crystals. Sci. Rep. 7, 11510 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).

    Article  PubMed  ADS  Google Scholar 

  31. Chen, X. M. & Quinn, J. J. Excitonic charge-density-wave instability of spatially separated electron-hole layers in strong magnetic fields. Phys. Rev. Lett. 67, 895–898 (1991).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Yang, K. Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum Hall systems at ν = 1. Phys. Rev. Lett. 87, 056802 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Conti, S. et al. Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures. Phys. Rev. Lett. 130, 057001 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Böning, J., Filinov, A. & Bonitz, M. Crystallization of an exciton superfluid. Phys. Rev. B 84, 075130 (2011).

    Article  ADS  Google Scholar 

  35. Szymański, J., Świerkowski, L. & Neilson, D. Correlations in coupled layers of electrons and holes. Phys. Rev. B 50, 11002–11007 (1994).

    Article  ADS  Google Scholar 

  36. Astrakharchik, G. E., Boronat, J., Kurbakov, I. L. & Lozovik, Y. E. Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett. 98, 060405 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Nguyen, R. Q. et al. Bilayer excitons in the Laughlin fractional quantum Hall state. Preprint at https://doi.org/10.48550/arXiv.2410.24208 (2024).

  38. Lozovik, Y. E., Ogarkov, S. L. & Sokolik, A. A. Condensation of electron-hole pairs in a two-layer graphene system: correlation effects. Phys. Rev. B 86, 045429 (2012).

    Article  ADS  Google Scholar 

  39. Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Lozovik, Y. E., Volkov, S. Y. & Willander, M. Structural properties of the condensate in two-dimensional mesoscopic systems of strongly correlated excitons. JETP Lett. 79, 473–478 (2004).

    Article  CAS  ADS  Google Scholar 

  41. Mitra, K., Williams, C. J. & Sá de Melo, C. A. R. Hexatic, Wigner crystal, and superfluid phases of dipolar bosons. Preprint at https://doi.org/10.48550/arXiv.0903.4655 (2009).

  42. Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Zeng, Y. et al. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 22, 175–179 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Abergel, D. S. L., Rodriguez-Vega, M., Rossi, E. & Das Sarma, S. Interlayer excitonic superfluidity in graphene. Phys. Rev. B 88, 235402 (2013).

    Article  ADS  Google Scholar 

  45. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Kellogg, M. J. Evidence for Excitonic Superfluidity in a Bilayer Two-Dimensional Electron System. PhD thesis, California Institute of Technology (2005).

  50. Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Wiersma, R. D. et al. Activated transport in the separate layers that form the νT = 1 exciton condensate. Phys. Rev. Lett. 93, 266805 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-WSe2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Shi, Q. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Champagne, A. R., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Charge imbalance and bilayer two-dimensional electron systems at νT = 1. Phys. Rev. B 78, 205310 (2008).

    Article  ADS  Google Scholar 

  57. Clarke, W. R. et al. Evolution of the bilayer ν = 1 quantum Hall state under charge imbalance. Phys. Rev. B 71, 081304 (2005).

    Article  ADS  Google Scholar 

  58. Joglekar, Y. N. & MacDonald, A. H. Bias-voltage-induced phase transition in bilayer quantum Hall ferromagnets. Phys. Rev. B 65, 235319 (2002).

    Article  ADS  Google Scholar 

  59. Andrei, E. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Jiang, H. W. et al. Quantum liquid versus electron solid around ν = 1/5 Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Ma, M. K. et al. Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid. Phys. Rev. Lett. 125, 036601 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Gervais, G. et al. Competition between a fractional quantum Hall liquid and bubble and Wigner crystal phases in the third Landau level. Phys. Rev. Lett. 93, 266804 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimensional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Tsui, Y.-C. et al. Direct observation of a magnetic-field-induced Wigner crystal. Nature 628, 287–292 (2024).

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Hatke, A. T. et al. Wigner solid pinning modes tuned by fractional quantum Hall states of a nearby layer. Sci. Adv. 5, eaao2848 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

J.I.A.L. and C.R.D. thank S. D. Sarma and K. Yang for their discussions. This research was primarily supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0019481 (transport measurements). Heterostructure and device fabrication were supported by the NSF MRSEC program at Columbia through the Center for Precision-Assembled Quantum Materials (DMR-2011738). Data analysis (Q.S.) was partially supported by the Department of Energy (DE-SC0016703). J.I.A.L. acknowledges support from the Sloan Research Fellowship and NSF DMR-2143384. N.J.Z. acknowledges support from the Air Force Office of Scientific Research. R.Q.N. acknowledges support from the National Science Foundation EPSCoR Program under NSF award OIA-2327206. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant nos. 20H00354, 21H05233 and 23H02052) and the World Premier International Research Center Initiative (WPI), MEXT, Japan. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation cooperative agreement no. DMR-1157490 and the State of Florida.

Author information

Authors and Affiliations

Authors

Contributions

C.R.D. and J.I.A.L. conceived the project. Y.Z., D.S. N.J.Z., R.Q.N., A.O. and J.I.A.L. fabricated the device. Y.Z., D.S., N.J.Z., R.Q.N., Q.S. and J.I.A.L. performed the measurement. K.W. and T.T. provided the material. Y.Z., J.H., C.R.D. and J.I.A.L. wrote the paper.

Corresponding authors

Correspondence to C. R. Dean or J. I. A. Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Anindya Das, David Neilson, Changgan Zeng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Parallel flow and counterflow measurement.

(a) Counterflow conductance (GCF, black trace) and parallel flow conductance (GPF, red trace) as a function of Δν measured at T = 0.3. (b) Counterflow conductance as a function of Δν measured at T = 0.3 K and 1.5 K. The Δν-regime of the exciton superfluid (ES) and exciton insulator (EI) are marked by red and blue shaded background, respectively. The superfluid corresponds to a large counterflow conductance, whereas it is insulating in parallel flow measurement. On the other hand, the exciton insulator displays zero conductance in both parallel flow and counterflow measurements. However, the insulator undergoes a reentrant transition into a superfluid phase with increasing temperature. (c) Counterflow and parallel flow conductance, GCF and GPF (black and red traces), as a function of temperature measured at Δν = −0.57, where the low temperature ground state is an exciton insulator. (d) Counterflow and parallel flow conductance, GCF and GPF (black and red traces), as a function of temperature measured at Δν = −0.44, where the low temperature ground state is an exciton superfluid. All measurements are performed in a Corbino-shaped sample (C1) at νtotal = 1 and B = 29 T. (e) GCF and GPF as a function of Δν near the low-temperature transition induced by Δν. A peak in GPF, marked by the vertical arrow, is observed near the transition. (f) GPF as a function of T measured at Δν = −0.57. Near the EI-to-ES transition with increasing temperature, GPF exhibits a small peak, which is marked by the black vertical arrow.

Source data

Extended Data Table 1 List of devices

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Sun, D., Zhang, N.J. et al. Observation of a superfluid-to-insulator transition of bilayer excitons. Nature (2026). https://doi.org/10.1038/s41586-025-09986-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-025-09986-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing