Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging a terahertz superfluid plasmon in a two-dimensional superconductor

Abstract

The superconducting gap defines the fundamental energy scale for the emergence of dissipationless transport and collective phenomena in a superconductor1,2,3. In layered high-temperature cuprate superconductors, in which the Cooper pairs are confined to weakly coupled two-dimensional (2D) copper–oxygen (CuO2) planes4,5, terahertz (THz) spectroscopy at subgap millielectronvolt (meV) energies has provided crucial insights into the collective superfluid response perpendicular to the superconducting layers6,7,8,9. However, within the CuO2 planes, the collective superfluid response manifests as plasmonic charge oscillations at energies far exceeding the superconducting gap, obscured by strong dissipation2,6,9,10. Here we present spectroscopic evidence of a below-gap, 2D superfluid plasmon in few-layer Bi2Sr2CaCu2O8+x and spatially resolve its deeply subdiffractive THz electrodynamics. By placing the superconductor in the near field of a spintronic THz emitter, we reveal this distinct resonance—absent in bulk samples and observed only in the superconducting phase—and determine its plasmonic nature by mapping the geometric anisotropy and dispersion. Crucially, these measurements offer a direct view of the momentum-dependent and frequency-dependent superconducting transition in two dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: THz microspectroscopy of few-layer Bi2Sr2CaCu2O8+x.
Fig. 2: Temperature dependence of the THz conductivity.
Fig. 3: THz hyperspectral imaging of Bi2Sr2CaCu2O8+x.
Fig. 4: Scale dependence of the superconducting transition.

Data availability

Datasets collected and/or analysed during the current study are available in the Supplementary Information and from the corresponding author on request. Source data are provided with this paper.

Code availability

The codes used to generate the data for this study are available from the corresponding author on request.

References

  1. Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–124 (2020).

    Article  CAS  ADS  Google Scholar 

  2. Tinkham, M. Introduction to Superconductivity (Dover Publications, 1996).

  3. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  4. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  ADS  Google Scholar 

  5. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Basov, D. N. & Timusk, T. Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77, 721–779 (2005).

    Article  CAS  ADS  Google Scholar 

  7. Tachiki, M., Koyama, T. & Takahashi, S. Electromagnetic phenomena related to a low-frequency plasma in cuprate superconductors. Phys. Rev. B 50, 7065–7084 (1994).

    Article  CAS  ADS  Google Scholar 

  8. Tamasaku, K., Nakamura, Y. & Uchida, S. Charge dynamics across the CuO2 planes in La2xSrxCuO4. Phys. Rev. Lett. 69, 1455–1458 (1992).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Kadowaki, K. et al. Longitudinal Josephson-plasma excitation in Bi2Sr2CaCu2O8+δ: direct observation of the Nambu-Goldstone mode in a superconductor. Phys. Rev. B 56, 5617–5621 (1997).

    Article  CAS  ADS  Google Scholar 

  10. Corson, J., Orenstein, J., Oh, S., O’Donnell, J. & Eckstein, J. N. Nodal quasiparticle lifetime in the superconducting state of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 85, 2569–2572 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Higgs, P. W. Broken symmetries, massless particles and gauge fields. Phys. Rev. Lett. 12, 132–133 (1964).

    Article  Google Scholar 

  12. Nambu, Y. Energy gap, mass gap, and spontaneous symmetry breaking. Int. J. Mod. Phys. A 25, 4141–4148 (2010).

    Article  CAS  ADS  Google Scholar 

  13. Pekker, D. & Varma, C. M. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6, 269–297 (2015).

    Article  CAS  ADS  Google Scholar 

  14. Volkov, A. F. & Kogan, S. M. Collisionless relaxation of the energy gap in superconductors. Zh. Eksp. Teor. Fiz. 65, 2038–2046 (1973).

    Google Scholar 

  15. Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).

    Article  PubMed  ADS  Google Scholar 

  16. Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2CaCu2O8+x driven by an intense terahertz pulse. Phys. Rev. Lett. 120, 117001 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Nambu, Y. Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  18. Anderson, P. W. Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  19. Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  20. Fertig, H. A. & Das Sarma, S. Collective modes in layered superconductors. Phys. Rev. Lett. 65, 1482–1485 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).

    Article  ADS  Google Scholar 

  22. Sun, Z., Fogler, M. M., Basov, D. N. & Millis, A. J. Collective modes and terahertz near-field response of superconductors. Phys. Rev. Res. 2, 023413 (2020).

    Article  CAS  Google Scholar 

  23. Richards, D., Zayats, A., Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A 362, 787–805 (2004).

    Article  Google Scholar 

  24. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 56, 223001 (2023).

    Article  CAS  ADS  Google Scholar 

  27. Dunmore, F. J. et al. Observation of below-gap plasmon excitations in superconducting YBa2Cu3O7 films. Phys. Rev. B 52, R731–R734 (1995).

    Article  CAS  ADS  Google Scholar 

  28. Stiewe, F.-F. et al. Spintronic emitters for super-resolution in THz-spectral imaging. Appl. Phys. Lett. 120, 032406 (2022).

    Article  CAS  ADS  Google Scholar 

  29. Handa, T. et al. Terahertz emission from giant optical rectification in a van der Waals material. Nat. Mater. 24, 1203–1208 (2025).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Blanchard, F. et al. Real-time terahertz near-field microscope. Opt. Express 19, 8277–8284 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Chen, S.-C. et al. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl. 9, 99 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Mitra, S., Avazpour, L. & Knezevic, I. Terahertz conductivity of two-dimensional materials: a review. J. Phys. Condens. Matter 37, 133005 (2025).

    Article  CAS  ADS  Google Scholar 

  34. Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 10, 483–488 (2016).

    Article  CAS  ADS  Google Scholar 

  35. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999).

  36. Michael, M. H. et al. Resolving self-cavity effects in two-dimensional quantum materials. Preprint at https://doi.org/10.48550/arXiv.2505.12799 (2025).

  37. Dressel, M. & Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge Univ. Press, 2002).

  38. Kaindl, R. A., Carnahan, M. A., Chemla, D. S., Oh, S. & Eckstein, J. N. Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 72, 060510 (2005).

    Article  ADS  Google Scholar 

  39. Cocker, T. L. et al. Microscopic origin of the Drude-Smith model. Phys. Rev. B 96, 205439 (2017).

    Article  ADS  Google Scholar 

  40. Molegraaf, H. J. A., Presura, C., van der Marel, D., Kes, P. H. & Li, M. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ. Science 295, 2239–2241 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Jacobs, T., Sridhar, S., Li, Q., Gu, G. D. & Koshizuka, N. In-plane and c-axis microwave penetration depth of Bi2Sr2CaCu2O8+δ crystals. Phys. Rev. Lett. 75, 4516–4519 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221–223 (1999).

    Article  CAS  ADS  Google Scholar 

  43. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181 (1973).

    Article  CAS  ADS  Google Scholar 

  44. Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987).

    Article  CAS  ADS  Google Scholar 

  45. Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964).

    Article  ADS  Google Scholar 

  47. Brandt, E. H. Vortex-vortex interaction in thin superconducting films. Phys. Rev. B 79, 134526 (2009).

    Article  ADS  Google Scholar 

  48. Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature 638, 93–98 (2025).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Tanaka, M. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 638, 99–105 (2025).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the U.S. Department of Energy, Materials Science and Engineering Division, Office of Basic Energy Sciences (BES DMSE) (data taking, analysis and manuscript writing) and the EPiQS Initiative grant GBMF9459 (instrumentation) of the Gordon and Betty Moore Foundation. The theory work was supported in part by the European Research Council (ERC-2024-SyG-101167294; UnMySt), the Cluster of Excellence: Advanced Imaging of Matter (AIM) and Grupos Consolidados UPV/EHU (IT1249-19). We also acknowledge support from the Max Planck–New York City Center for Non-Equilibrium Quantum Phenomena. The Flatiron Institute is a division of the Simons Foundation. P.K. and X.C. acknowledge support from AFOSR (FA9550-25-1-0019). The work at BNL was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, contract no. DOE-SC0012704. A.v.H. acknowledges support from the Alexander von Humboldt Foundation. C.J.A. acknowledges support from the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program. E.V.B. acknowledges support from the European Union’s Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101106809. T.T. acknowledges support by the National Science Scholarship by the Agency for Science, Technology and Research (A*STAR), Singapore. M.Y. acknowledges support from the National Science Foundation MPS-Ascend Postdoctoral Research Fellowship under grant no. 2402151. K.T. acknowledges support from the NSF GRFP fellowship. Fabrication was carried out with the use of MIT.nano.

Author information

Authors and Affiliations

Authors

Contributions

A.v.H., C.J.A. and N.G. conceived the project. A.v.H. led the experimental effort. A.v.H., T.T. and C.J.A. built the THz microscopy set-up. T.T. developed the measurement software. A.v.H. and T.T., with support from C.J.A., performed the THz microscopy measurements. A.v.H. and T.T., with support from C.J.A., analysed the experimental data. B.L. and A.E.K., supervised by G.S.D.B., fabricated the spintronic emitter. M.Y., with support from A.v.H., designed and deposited the distributed Bragg reflectors. M.Y. and J.P. fabricated the metallic marker structures used for the calibration measurements. X.C. and K.T., supervised by P.K., prepared the BSCCO samples. G.D.G. provided the BSCCO single crystals. J.P. carried out the atomic force microscopy characterization. M.H.M., supported by E.V.B. and supervised by A.R., developed the theoretical description of the experiment. A.v.H., with support from T.T., wrote the manuscript, with input from all authors. The project was supervised by N.G.

Corresponding author

Correspondence to N. Gedik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Albert Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–23 including Supplementary Figs. 1–32 and further references – see Contents for details.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Hoegen, A., Tai, T., Allington, C.J. et al. Imaging a terahertz superfluid plasmon in a two-dimensional superconductor. Nature (2026). https://doi.org/10.1038/s41586-025-10082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-025-10082-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing