Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous-wave narrow-linewidth vacuum ultraviolet laser source

Abstract

The exceptionally low-energy isomeric transition in 229Th at around 148.4 nm (refs. 1,2,3,4,5,6) offers a unique opportunity for coherent nuclear control and the realization of a nuclear clock7,8. Recent advances, most notably the incorporation of large ensembles of 229Th nuclei in transparent crystals6,9,10,11 and the development of pulsed vacuum ultraviolet (VUV) lasers12,13,14, have enabled initial laser spectroscopy of this transition15,16,17. However, the lack of an intense, narrow-linewidth VUV laser has precluded coherent nuclear manipulation8,18. Here we introduce and report a continuous-wave (CW) laser at 148.4 nm, generated by means of four-wave mixing (FWM)19 in cadmium vapour. The source delivers more than 100 nW of power with a projected linewidth well below 100 Hz and supports broad wavelength tunability. This represents a five-orders-of-magnitude improvement in linewidth over all previous single-frequency lasers below 190 nm (refs. 12,13,14,20). We develop a spatially resolved homodyne technique that places a stringent upper bound on FWM-induced phase noise, thereby supporting the feasibility of sub-hertz VUV linewidths. Our work addresses the central challenge towards a 229Th-based nuclear clock and establishes a widely tunable, ultranarrow-linewidth laser platform for potential applications across quantum information science21,22,23,24, condensed-matter physics25 and high-resolution VUV spectroscopy26.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of a CW VUV laser with narrow linewidth.
Fig. 2: VUV yield characterization.
Fig. 3: Upper bound on phase noise induced by the FWM process.

Similar content being viewed by others

Data availability

The datasets generated and analysed during this study are available in the Figshare repository at https://doi.org/10.6084/m9.figshare.30795137.

Code availability

The plotting scripts used to generate the figures from the datasets are available in the Figshare repository at https://doi.org/10.6084/m9.figshare.30795137.

References

  1. Kroger, L. A. & Reich, C. W. Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U. Nucl. Phys. A 259, 29–60 (1976).

    Article  ADS  Google Scholar 

  2. Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181 (2003).

    Article  ADS  CAS  Google Scholar 

  8. Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).

    Article  ADS  PubMed  Google Scholar 

  10. Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

    Article  ADS  Google Scholar 

  11. Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeet, J. Search for the Low Lying Transition in the 229Th Nucleus. Dissertation, Univ. California, Los Angeles (2018).

  13. Thielking, J. et al. Vacuum-ultraviolet laser source for spectroscopy of trapped thorium ions. New J. Phys. 25, 083026 (2023).

    Article  ADS  CAS  Google Scholar 

  14. Zhang, C. et al. Tunable VUV frequency comb for 229mTh nuclear spectroscopy. Opt. Lett. 47, 5591–5594 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Zhang, C. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article  CAS  Google Scholar 

  19. Hodgson, R. T., Sorokin, P. P. & Wynne, J. J. Tunable coherent vacuum-ultraviolet generation in atomic vapors. Phys. Rev. Lett. 32, 343–346 (1974).

    Article  ADS  CAS  Google Scholar 

  20. Scholz, M. et al. 1.3-mW tunable and narrow-band continuous-wave light source at 191 nm. Opt. Express 20, 18659–18664 (2012).

    Article  ADS  PubMed  Google Scholar 

  21. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Marshall, M. C. et al. High-stability single-ion clock with 5.5 × 10−19 systematic uncertainty. Phys. Rev. Lett. 135, 033201 (2025).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Schmidt-Kaler, F. et al. Rydberg excitation of trapped cold ions: a detailed case study. New J. Phys. 13, 075014 (2011).

    Article  ADS  Google Scholar 

  24. Zhang, C. et al. Submicrosecond entangling gate between trapped ions via Rydberg interaction. Nature 580, 345–349 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhou, X. et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep. Prog. Phys. 81, 062101 (2018).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  26. Kostko, O., Bandyopadhyay, B. & Ahmed, M. Vacuum ultraviolet photoionization of complex chemical systems. Annu. Rev. Phys. Chem. 67, 19–40 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Fuchs, E. et al. Searching for dark matter with the 229Th nuclear lineshape from laser spectroscopy. Phys. Rev. X 15, 021055 (2025).

    CAS  Google Scholar 

  29. Zhang, C. et al. 229ThF4 thin films for solid-state nuclear clocks. Nature 636, 603–608 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Higgins, J. S. et al. Temperature sensitivity of a thorium-229 solid-state nuclear clock. Phys. Rev. Lett. 134, 113801 (2025).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Terhune, J. E. S. et al. Photo-induced quenching of the 229Th isomer in a solid-state host. Phys. Rev. Res. 7, L022062 (2025).

    Article  CAS  Google Scholar 

  32. Schaden, F. et al. Laser-induced quenching of the Th-229 nuclear clock isomer in calcium fluoride. Phys. Rev. Res. 7, L022036 (2025).

    Article  CAS  Google Scholar 

  33. Campbell, C. J., Radnaev, A. G. & Kuzmich, A. Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Scharl, K. et al. Setup for the ionic lifetime measurement of the 229mTh3+ nuclear clock isomer. Atoms 11, 108 (2023).

    Article  ADS  CAS  Google Scholar 

  36. Zitzer, G. et al. Sympathetic cooling of trapped Th3+ alpha-recoil ions for laser spectroscopy. Phys. Rev. A 109, 033116 (2024).

    Article  ADS  CAS  Google Scholar 

  37. Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).

    Article  ADS  CAS  Google Scholar 

  39. Thirolf, P. Shedding light on the thorium-229 nuclear clock isomer. Physics 17, 71 (2024).

    Article  Google Scholar 

  40. Mutailipu, M. & Pan, S. Emergent deep-ultraviolet nonlinear optical candidates. Angew. Chem. Int. Ed. 59, 20302–20317 (2020).

    Article  CAS  Google Scholar 

  41. Víllora, E. G., Shimamura, K., Sumiya, K. & Ishibashi, H. Birefringent- and quasi phase-matching with BaMgF4 for vacuum-UV/UV and mid-IR all solid-state lasers. Opt. Express 17, 12362–12378 (2009).

    Article  ADS  PubMed  Google Scholar 

  42. Yakar, O., Nitiss, E., Hu, J. & Brès, C.-S. Integrated backward second-harmonic generation through optically induced quasi-phase-matching. Phys. Rev. Lett. 131, 143802 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Eikema, K. S. E., Walz, J. & Hänsch, T. W. Continuous wave coherent Lyman-α radiation. Phys. Rev. Lett. 83, 3828 (1999).

    Article  ADS  CAS  Google Scholar 

  44. Kolbe, D., Scheid, M. & Walz, J. Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation. Phys. Rev. Lett. 109, 063901 (2012).

    Article  ADS  PubMed  Google Scholar 

  45. Pahl, A. et al. Generation of continuous coherent radiation at Lyman-α and 1S-2P spectroscopy of atomic hydrogen. Laser Phys. 15, 46–54 (2005).

    CAS  Google Scholar 

  46. Xiao, Q. et al. Proposal for the generation of continuous-wave vacuum ultraviolet laser light for Th-229 isomer precision spectroscopy. Preprint at https://arxiv.org/abs/2406.16841 (2024).

  47. Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).

    Article  ADS  CAS  Google Scholar 

  48. Penyazkov, G., Yu, Y., Skripnikov, L. V. & Ding, S. Theoretical study of transition matrix elements in cadmium for vacuum-ultraviolet generation in 229Th nuclear clock applications. Phys. Rev. A 112, 022807 (2025).

    Article  ADS  CAS  Google Scholar 

  49. Wang, J. et al. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation. Rev. Sci. Instrum. 88, 114102 (2017).

  50. Vidal, C. R. in Tunable Lasers (eds Mollenauer, L. F., White, J. C. & Pollock, C. R.) Ch. 3 (Springer, 2005).

  51. Tian, H. et al. Frequency-shifted f-2f interferometer for unveiling the noise performance of carrier-envelope offset in passively stabilized frequency combs. Appl. Phys. Lett. 125, 241107 (2024).

    Article  ADS  CAS  Google Scholar 

  52. Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2, 033395 (2020).

    Article  CAS  Google Scholar 

  53. von der Wense, L. et al. The theory of direct laser excitation of nuclear transitions. Eur. Phys. J. A 56, 176 (2020).

    Article  ADS  Google Scholar 

  54. Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Lal, V. et al. Continuous-wave laser source at the 148 nm nuclear transition of Th-229. Optica 12, 1971–1974 (2025).

    Article  ADS  Google Scholar 

  57. Wu, L. et al. 0.26-Hz-linewidth ultrastable lasers at 1557 nm. Sci. Rep. 6, 24969 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Riley, D. S. & Karam, S. L. The Allan variance and its applications to frequency stability measurements. Proc. IEEE 82, 1250–1259 (1994).

    Google Scholar 

  60. Riley, W. J. Handbook of frequency stability analysis. National Institute of Standards and Technology https://www.nist.gov/publications/handbook-frequency-stability-analysis (2008).

  61. Makdissi, A., Vernotte, F. & De Clercq, E. Stability variances: a filter approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1011–1028 (2010).

    Article  ADS  PubMed  Google Scholar 

  62. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

  63. Elliott, D. S., Roy, R. & Smith, S. J. Extracavity laser band-shape and bandwidth modification. Phys. Rev. A 26, 12–18 (1982).

    Article  ADS  CAS  Google Scholar 

  64. Larkin, K. G. Efficient nonlinear algorithm for envelope detection in white-light interferograms. J. Opt. Soc. Am. A 13, 832–843 (1996).

    Article  ADS  Google Scholar 

  65. Rutman, J. Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. Proc. IEEE 66, 1048–1075 (1978).

    Article  ADS  Google Scholar 

  66. Domenico, G. D., Schilt, S. & Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49, 4801–4807 (2010).

    Article  ADS  PubMed  Google Scholar 

  67. Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

    Article  Google Scholar 

  68. Photomultiplier Tubes: Basics and Applications 4th edn (Hamamatsu Photonics K. K., 2017).

Download references

Acknowledgements

We thank X. Zhang and S. Zhou for discussions, Z. Xu and X. Wen for advice on frequency doubling, M. K. Tey for support on electronics and C. Zhang, H. Wu and J. Ye for comments on the manuscript. This work is supported by the National Natural Science Foundation of China (NSFC no. 12341401), Beijing Science and Technology Planning Project (grant no. Z25110100040000) and the Tsinghua University Dushi Program, as well as by NSFC nos. 12274253, 92265205, 12504306 and 92565202.

Author information

Authors and Affiliations

Authors

Contributions

Q.X., G.P., X.L., B.H., W.B., J.S., H.S., G.Y., Y. Li, J.L., L.Y., Y.M. and S.D. designed the experiment, constructed the set-up and carried out the measurements. T.L., H.T., B.L. and Y. Lin built the ULE-cavity-stabilized 1,550-nm laser. Q.X. and S.D. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Shiqian Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Tomas Sikorsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Measurement of VUV power.

With the 710-nm beam shuttered, the PMT records a background count rate of 1.42(1) × 105 s−1. At t ≈ 3.5 s, the 710-nm beam is unshuttered and the count rate rises to 4.76(34) × 106 s−1. Control measurements verify that the background count is dominated by residual 375-nm stray light, that the PMT is insensitive at 710-nm and that it operates in the linear regime. Using the overall detection efficiency ηabs = 0.21(4) × 10−4 (Extended Data Table 1), we infer a VUV power of 290(60) nW at 148.4 nm.

Extended Data Fig. 2 Linewidth measurements of the 750-nm and 710-nm Ti:sapphire lasers.

a, 750-nm Ti:sapphire laser. b, 710-nm Ti:sapphire laser. Both lasers are Pound–Drever–Hall-locked to a 10-cm-long ULE cavity. Each is heterodyned with an optical frequency comb referenced to a ULE-stabilized fibre laser at 1,550 nm (linewidth 0.25(1) Hz). The optical beats are down-mixed to an intermediate frequency within the span of a dynamic signal analyser and the resulting spectra (blue points) are fitted with Lorentzians (blue lines), yielding FWHM linewidths of Δf750 = 1.05(7) Hz and Δf710 = 1.01(9) Hz after subtracting the comb contribution67.

Extended Data Table 1 Uncertainty budget of the VUV power measurement at 148.4 nm

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Penyazkov, G., Li, X. et al. Continuous-wave narrow-linewidth vacuum ultraviolet laser source. Nature (2026). https://doi.org/10.1038/s41586-026-10107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-026-10107-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing