This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Data-driven synthetic microbes for sustainable future
npj Systems Biology and Applications Open Access 07 July 2025
-
A survey of computational approaches for characterizing microbial interactions in microbial mats
Genome Biology Open Access 16 June 2025
-
Genome-scale metabolic network reconstruction analysis identifies bacterial vaginosis-associated metabolic interactions
Nature Communications Open Access 22 May 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


Data availability
The model collection is available at https://doi.org/10.5281/zenodo.2636858. Individual results and aggregated tables, as well as analysis code, are available at https://doi.org/10.5281/zenodo.2638234.
Code availability
MEMOTE source code is available at https://github.com/opencobra/memote under the Apache license, version 2.0. Supporting documentation is available at https://memote.readthedocs.io/en/latest/. The MEMOTE web interface is hosted at https://memote.io. A detailed list of all tests in MEMOTE is available at https://memote.readthedocs.io/en/latest/autoapi/index.html.
Change history
19 March 2020
A Correction to this paper has been published: https://doi.org/10.1038/s41587-020-0477-4
References
Palsson, B.Ø. Systems Biology: Constraint-based Reconstruction and Analysis (Cambridge Univ. Press, 2015).
Thiele, I. & Palsson, B. Ø. Nat. Protoc. 5, 93–121 (2010).
Heavner, B. D. & Price, N. D. Curr. Opin. Biotechnol. 34, 105–109 (2015).
Ravikrishnan, A. & Raman, K. Brief. Bioinform. 16, 1057–1068 (2015).
Chan, S.H.J., Cai, J., Wang, L., Simons-Senftle, M.N. & Maranas, C.D. Bioinformatics https://doi.org/10.1093/bioinformatics/btx453 (2017).
Xavier, J. C., Patil, K. R. & Rocha, I. Metab. Eng. 39, 200–208 (2017).
Fritzemeier, C. J., Hartleb, D., Szappanos, B., Papp, B. & Lercher, M. J. PLoS Comput. Biol. 13, e1005494 (2017).
Jerby, L. & Ruppin, E. Clin. Cancer Res. 18, 5572–5584 (2012).
Olivier, B.G. & Bergmann, F.T. J. Integr. Bioinform. 15, 20170082 (2018).
Heirendt, L. et al. Nat. Protoc. 14, 639–702 (2019).
Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. BMC Syst. Biol. 7, 74 (2013).
Chelliah, V. et al. Nucleic Acids Res. 43, D542–D548 (2015).
King, Z. A. et al. Nucleic Acids Res. 44, D515–D522 (2016).
Arkin, A. P. et al. Nat. Biotechnol. 36, 566–569 (2018).
Rocha, I. et al. BMC Syst. Biol. 4, 45 (2010).
Cooper, J., Vik, J. O. & Waltemath, D. Prog. Biophys. Mol. Biol. 117, 99–106 (2015).
Beaulieu-Jones, B. K. & Greene, C. S. Nat. Biotechnol. 35, 342–346 (2017).
Bornstein, B. J., Keating, S. M., Jouraku, A. & Hucka, M. Bioinformatics 24, 880–881 (2008).
Le Novère, N. et al. Nat. Biotechnol. 23, 1509–1515 (2005).
Courtot, M. et al. Mol. Syst. Biol. 7, 543 (2011).
Monk, J., Nogales, J. & Palsson, B. O. Nat. Biotechnol. 32, 447–452 (2014).
Büchel, F. et al. BMC Syst. Biol. 7, 116 (2013).
Yuan, Q. et al. PLoS One 12, e0169437 (2017).
Keller, M. A., Piedrafita, G. & Ralser, M. Curr. Opin. Biotechnol. 34, 153–161 (2015).
Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Nucleic Acids Res. 46, 7542–7553 (2018).
Magnúsdóttir, S. et al. Nat. Biotechnol. 35, 81–89 (2017).
Moretti, S. et al. Nucleic Acids Res. 44, D523–D526 (2016).
Steffensen, J. L., Dufault-Thompson, K., Zhang, Y. & Dandekar, T. PSAMM: a portable system for the analysis of metabolic models. PLOS Comput. Biol. 12, e1004732 (2016).
Sidiropoulos, N. et al. SinaPlot: an enhanced chart for simple and truthful representation of single observations over multiple classes. J. Comput. Graph. Stat. 27, 673–676 (2018).
Ebrahim, A. et al. Do genome-scale models need exact solvers or clearer standards? Mol. Syst. Biol. 11, 831 (2015).
Acknowledgements
We acknowledge D. Dannaher and A. Lopez for their supporting work on the Angular parts of MEMOTE; resources and support from the DTU Computing Center; J. Cardoso, S. Gudmundsson, K. Jensen and D. Lappa for their feedback on conceptual details; and P. D. Karp and I. Thiele for critically reviewing the manuscript. We thank J. Daniel, T. Kristjánsdóttir, J. Saez-Saez, S. Sulheim, and P. Tubergen for being early adopters of MEMOTE and for providing written testimonials. J.O.V. received the Research Council of Norway grants 244164 (GenoSysFat), 248792 (DigiSal) and 248810 (Digital Life Norway); M.Z. received the Research Council of Norway grant 244164 (GenoSysFat); C.L. received funding from the Innovation Fund Denmark (project “Environmentally Friendly Protein Production (EFPro2)”); C.L., A.K., N. S., M.B., M.A., D.M., P.M, B.J.S., P.V., K.R.P. and M.H. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 686070 (DD-DeCaF); B.G.O., F.T.B. and A.D. acknowledge funding from the US National Institutes of Health (NIH, grant number 2R01GM070923-13); A.D. was supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections; N.E.L. received funding from NIGMS R35 GM119850, Novo Nordisk Foundation NNF10CC1016517 and the Keck Foundation; A.R. received a Lilly Innovation Fellowship Award; B.G.-J. and J. Nogales received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 686585 for the project LIAR, and the Spanish Ministry of Economy and Competitivity through the RobDcode grant (BIO2014-59528-JIN); L.M.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 633962 for project P4SB; R.F. received funding from the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0010429; A.M., C.Z., S.L. and J. Nielsen received funding from The Knut and Alice Wallenberg Foundation, Advanced Computing program, grant #DE-SC0010429; S.K.’s work was in part supported by the German Federal Ministry of Education and Research (de.NBI partner project “ModSim” (FKZ: 031L104B)); E.K. and J.A.H.W. were supported by the German Federal Ministry of Education and Research (project “SysToxChip”, FKZ 031A303A); M.K. is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054); J.A.P. and G.L.M. acknowledge funding from US National Institutes of Health (T32-LM012416, R01-AT010253, R01-GM108501) and the Wagner Foundation; G.L.M. acknowledges funding from a Grand Challenges Exploration Phase I grant (OPP1211869) from the Bill & Melinda Gates Foundation; H.H. and R.S.M.S. received funding from the Biotechnology and Biological Sciences Research Council MultiMod (BB/N019482/1); H.U.K. and S.Y.L. received funding from the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea; H.U.K. received funding from the Bio & Medical Technology Development Program of the NRF, the Ministry of Science and ICT (NRF-2018M3A9H3020459); P.B., B.J.S., Z.K., B.O.P., C.L., M.B., N.S., M.H. and A.F. received funding through Novo Nordisk Foundation through the Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517); D.-Y.L. received funding from the Next-Generation BioGreen 21 Program (SSAC, PJ01334605), Rural Development Administration, Republic of Korea; G.F. was supported by the RobustYeast within ERA net project via SystemsX.ch; V.H. received funding from the ETH Domain and Swiss National Science Foundation; M.P. acknowledges Oxford Brookes University; J.C.X. received support via European Research Council (666053) to W.F. Martin; B.E.E. acknowledges funding through the CSIRO-UQ Synthetic Biology Alliance; C.D. is supported by a Washington Research Foundation Distinguished Investigator Award. I.N. received funding from National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (grant P20GM125503).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Supplementary information
Supplementary Materials
Supplementary Figs. 1–162, Notes 1–5, Methods, and Tables 1 and 2
Source data
Rights and permissions
About this article
Cite this article
Lieven, C., Beber, M.E., Olivier, B.G. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol 38, 272–276 (2020). https://doi.org/10.1038/s41587-020-0446-y
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41587-020-0446-y
This article is cited by
-
MACAW: a method for semi-automatic detection of errors in genome-scale metabolic models
Genome Biology (2025)
-
A survey of computational approaches for characterizing microbial interactions in microbial mats
Genome Biology (2025)
-
Genome-scale models in human metabologenomics
Nature Reviews Genetics (2025)
-
Spontaneous immortalization of bovine fibroblasts following long-term expansion offers a non-transformed cell source for cultivated beef
Nature Food (2025)
-
Moving from genome-scale to community-scale metabolic models for the human gut microbiome
Nature Microbiology (2025)