Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant

Abstract

Vascular complications following solid organ transplantation may lead to graft ischemia, dysfunction or loss. Imaging approaches can provide intermittent assessments of graft perfusion, but require highly skilled practitioners and do not directly assess graft oxygenation. Existing systems for monitoring tissue oxygenation are limited by the need for wired connections, the inability to provide real-time data or operation restricted to surface tissues. Here, we present a minimally invasive system to monitor deep-tissue O2 that reports continuous real-time data from centimeter-scale depths in sheep and up to a 10-cm depth in ex vivo porcine tissue. The system is composed of a millimeter-sized, wireless, ultrasound-powered implantable luminescence O2 sensor and an external transceiver for bidirectional data transfer, enabling deep-tissue oxygenation monitoring for surgical or critical care indications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wireless O2-monitoring system overview.
Fig. 2: Biocompatible O2-sensing film, operating principle of the luminescence O2 sensor and its optical characterization.
Fig. 3: Entirely wireless O2-monitoring system block diagram.
Fig. 4: In vitro characterization of the wireless O2-sensing system.
Fig. 5: Surgical placement of and recording from the implantable, wireless O2 sensor under conditions of normoxia, hyperoxia and hypoxia.
Fig. 6: In vitro and ex vivo uplink characterization of the wireless O2-sensing system.

Similar content being viewed by others

Data availability

All data supporting the results in this study are available within the article or its Supplementary Information.

Code availability

The custom Labview program and Matlab code used in this study are available on Github at https://github.com/ssonmezoglu/NBT-21.

References

  1. Gibbons, R. D., Meltzer, D. & Duan, N. Waiting for organ transplantation. Science 287, 237–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Piardi, T. Vascular complications following liver transplantation: a literature review of advances in 2015. World J. Hepatol. 8, 36–57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marland, J. R. K. et al. Real-time measurement of tumour hypoxia using an implantable microfabricated oxygen sensor. Sensing and Bio-Sensing Research 30, 100375 (2020).

    Article  Google Scholar 

  4. Peterson, J. I., Fitzgerald, R. V. & Buckhold, D. K. Fiber-optic probe for in vivo measurement of oxygen partial pressure. Anal. Chem. 56, 62–67 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, S. et al. Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model. Magn. Reson. Med. 66, 1722–1730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elas, M. et al. Electron paramagnetic resonance oxygen images correlate spatially and quantitatively with oxylite oxygen measurements. Clin. Cancer Res. 12, 4209–4217 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Gómez, H. et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med. 34, 1600–1607 (2008).

    Article  PubMed  Google Scholar 

  8. Lynch, J. M. et al. Noninvasive optical quantification of cerebral venous oxygen saturation in humans. Acad. Radiol. 21, 162–167 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang, H. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, eaaw0873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).

    Article  PubMed  Google Scholar 

  12. Thimot, J. & Shepard, K. L. Bioelectronic devices: wirelessly powered implants. Nat. Biomed. Eng. 1, 0051 (2017).

  13. O’Leary, B. & Vaezy, S. Marketing clearance of diagnostic ultrasound systems and transducers. https://www.fda.gov/media/71100/download (US Food and Drug Administration, 2019).

  14. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991) 1–238 (2006).

  15. Ammi, A. Y. et al. Characterization of ultrasound propagation through ex-vivo human temporal bone. Ultrasound Med. Biol. 34, 1578–1589 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maleki, T. et al. An ultrasonically powered implantable micro-oxygen generator (IMOG). IEEE Trans. Biomed. Eng. 58, 3104–3111 (2011).

    Article  PubMed  Google Scholar 

  17. Kim, A. et al. An implantable ultrasonically-powered micro-light-source (µLight) for photodynamic therapy. Sci. Rep. 9, 1395 (2019).

  18. Sonmezoglu, S. & Maharbiz, M. M. A 4.5mm3 deep-tissue ultrasonic implantable luminescence oxygen sensor. In 2020 IEEE International Solid- State Circuits Conference (ISSCC) 454–456 (2020).

  19. Yao, L., Khan, R., Chodavarapu, V. P., Tripathi, V. S. & Bright, F. V. Sensitivity-enhanced CMOS phase luminometry system using xerogel-based sensors. IEEE Trans. Biomed. Circuits Syst. 3, 304–311 (2009).

    Article  Google Scholar 

  20. McDonagh, C. et al. Phase fluorometric dissolved oxygen sensor. Sens. Actuators B Chem. 74, 124–130 (2001).

    Article  CAS  Google Scholar 

  21. Wang, X. & Wolfbeis, O. S. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 43, 3666–3761 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Holland, R. Resonant properties of piezoelectric ceramic rectangular parallelepipeds. J. Acoust. Soc. Am. 43, 988–997 (1968).

    Article  Google Scholar 

  23. Chan, C.-M., Chan, M.-Y., Zhang, M., Lo, W. & Wong, K.-Y. The performance of oxygen sensing films with ruthenium-adsorbed fumed silica dispersed in silicone rubber. Analyst 124, 691–694 (1999).

    Article  CAS  Google Scholar 

  24. Jorge, P. A. S., Caldas, P., Rosa, C. C., Oliva, A. G. & Santos, J. L. Optical fiber probes for fluorescence based oxygen sensing. Sens. Actuators B Chem. 103, 290–299 (2004).

    Article  CAS  Google Scholar 

  25. Hartmann, P., Leiner, M. J. P. & Kohlbacher, P. Photobleaching of a ruthenium complex in polymers used for oxygen optodes and its inhibition by singlet oxygen quenchers. Sens. Actuators B Chem. 51, 196–202 (1998).

    Article  CAS  Google Scholar 

  26. Guo, J. & Sonkusale, S. A 65 nm CMOS digital phase imager for time-resolved fluorescence imaging. IEEE J. Solid-State Circuits 47, 1731–1742 (2012).

    Article  Google Scholar 

  27. Ghanbari, M. M. et al. A sub-mm3 ultrasonic free-floating implant for multi-mote neural recording. IEEE J. Solid-State Circuits 54, 3017–3030 (2019).

    Article  Google Scholar 

  28. Kino, G. S. Acoustic Waves: Devices, Imaging, and Analog Signal Processing. (Prentice Hall, 1987).

  29. Adkins, J. N. et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics 1, 947–955 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Ratner, B. D. Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J. Dent. Educ. 65, 1340–1347 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Blaszykowski, C., Sheikh, S. & Thompson, M. Surface chemistry to minimize fouling from blood-based fluids. Chem. Soc. Rev. 41, 5599–5612 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Norton, P. T., DeAngelis, G. A., Ogur, T., Saad, W. E. & Hagspiel, K. D. Noninvasive vascular imaging in abdominal solid organ transplantation. Am. J. Roentgenol. 201, W544–W553 (2013).

    Article  Google Scholar 

  33. Boraschi, P., Pina, M. C. D. & Donati, F. Graft complications following orthotopic liver transplantation: role of non-invasive cross-sectional imaging techniques. Eur. J. Radiol. 85, 1271–1283 (2016).

    Article  PubMed  Google Scholar 

  34. Hickman, P. E., Potter, J. M. & Pesce, A. J. Clinical chemistry and post-liver-transplant monitoring. Clin. Chem. 43, 1546–1554 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell, R. N. Graft vascular disease: immune response meets the vessel wall. Annu. Rev. Pathol. 4, 19–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Khaja, M. S., Matsumoto, A. H. & Saad, W. E. Complications of transplantation. Part 1: renal transplants. Cardiovasc. Intervent. Radiol. 37, 1137–1148 (2014).

    Article  PubMed  Google Scholar 

  37. Wunsch, H., Angus, D. C., Harrison, D. A., Linde-Zwirble, W. T. & Rowan, K. M. Comparison of medical admissions to intensive care units in the United States and United Kingdom. Am. J. Respir. Crit. Care Med. 183, 1666–1673 (2011).

    Article  PubMed  Google Scholar 

  38. Barrett, M. L., Smith, M. W., Elixhauser, A., Honigman, L. S. & Pines, J. M. Utilization of intensive care services, 2011: statistical brief #185. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs (Agency for Healthcare Research and Quality (US), 2006).

  39. Dyson, A. & Singer, M. Tissue oxygen tension monitoring: will it fill the void? Curr. Opin. Crit. Care 17, 281–289 (2011).

  40. Brandstrup, B. et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: A randomized assessor-blinded multicenter trial. Ann. Surg. 238, 641–648 (2003).

  41. Dünser, M. W. et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit. Care 13, R181 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ince, C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit. Care 19, S8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kara, A., Akin, S. & Ince, C. Monitoring microcirculation in critical illness. Curr. Opin. Crit. Care 22, 444–452 (2016).

  44. Wang, M. L., Chang, T. C. & Arbabian, A. Ultrasonic implant localization for wireless power transfer: active uplink and harmonic backscatter. In 2019 IEEE International Ultrasonics Symposium (IUS) 818–821 (2019).

  45. Koch, T. et al. Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: I. Muscle. Meat Sci. 88, 51–58 (2011).

    Article  PubMed  Google Scholar 

  46. Wang, M. L. et al. Closed-loop ultrasonic power and communication with multiple miniaturized active implantable medical devices. In 2017 IEEE International Ultrasonics Symposium (IUS) 1–4 (2017).

  47. Shen, K. & Maharbiz, M. M. Ceramic packaging for neural implants. J. Neural Eng. 18, 025002 (2021)

  48. Shen, K. & Maharbiz, M. M. Design of ceramic packages for ultrasonically coupled implantable medical devices. IEEE Trans. Biomed. Eng. 67, 2230–2240 (2020).

    Article  PubMed  Google Scholar 

  49. Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Pfeiffer, S. A. & Nagl, S. Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications. Methods. Appl. Fluoresc. 3, 034003 (2015).

    Article  PubMed  CAS  Google Scholar 

  51. Lu, X., Manners, I. & Winnik, M. A. Polymer/silica composite films as luminescent oxygen sensors. Macromolecules 34, 1917–1927 (2001).

    Article  CAS  Google Scholar 

  52. Hassler, C., Boretius, T. & Stieglitz, T. Polymers for neural implants. J. Polym. Sci. B Polym. Phys. 49, 18–33 (2011).

    Article  CAS  Google Scholar 

  53. Chang, T. C. et al. Design of tunable ultrasonic receivers for efficient powering of implantable medical devices with reconfigurable power loads. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1554–1562 (2016).

    Article  PubMed  Google Scholar 

  54. El-Sheimy, N., Hou, H. & Niu, X. Analysis and modeling of inertial sensors using allan variance. IEEE Trans. Instrum. Meas. 57, 140–149 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chan Zuckerberg Biohub (CZB) (to M.M.M.) and by NIH/NICHD R44HD094414 and R01HD072455 (to J.R.F. and E.M.). We thank C. Losser, R. Hutchings and C. Vento for expert assistance with animal handling and surgery as well as members of the Laboratory Animal Resource Center (LARC) at the University of California, San Francisco. We also thank the Berkeley Wireless Research Center and R. Muller (University of California, Berkeley) for access to IC design software.

Author information

Authors and Affiliations

Authors

Contributions

S.S. supervised the project, designed and built the wireless system, designed and performed the in vitro and ex vivo experiments and analyzed and interpreted the associated data. S.S., J.R.F. and E.M. designed and performed the in vivo experiments and interpreted biological data. M.M.M. contributed to the design of the experiments. S.S., E.M. and M.M.M. participated in writing the paper. All authors contributed to the discussion of the paper.

Corresponding authors

Correspondence to Soner Sonmezoglu or Michel M. Maharbiz.

Ethics declarations

Competing interests

M.M.M. is an employee of iota Biosciences, Inc., a fully owned subsidiary of Astellas Pharma. All of the other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes and Figs. 1–14.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonmezoglu, S., Fineman, J.R., Maltepe, E. et al. Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nat Biotechnol 39, 855–864 (2021). https://doi.org/10.1038/s41587-021-00866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-021-00866-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing