Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanopore sequencing technology, bioinformatics and applications

Abstract

Rapid advances in nanopore technologies for sequencing single long DNA and RNA molecules have led to substantial improvements in accuracy, read length and throughput. These breakthroughs have required extensive development of experimental and bioinformatics methods to fully exploit nanopore long reads for investigations of genomes, transcriptomes, epigenomes and epitranscriptomes. Nanopore sequencing is being applied in genome assembly, full-length transcript detection and base modification detection and in more specialized areas, such as rapid clinical diagnoses and outbreak surveillance. Many opportunities remain for improving data quality and analytical approaches through the development of new nanopores, base-calling methods and experimental protocols tailored to particular applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of nanopore sequencing.
Fig. 2: ONT sequencing data improvement over time.
Fig. 3: Library preparation workflow for ONT sequencing.
Fig. 4: Analyses of ONT sequencing data.
Fig. 5: Applications of ONT sequencing.

Similar content being viewed by others

References

  1. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    Article  PubMed  Google Scholar 

  4. Yang, Y. et al. Advances in nanopore sequencing technology. J. Nanosci. Nanotechnol. 13, 4521–4538 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Maitra, R. D., Kim, J. & Dunbar, W. B. Recent advances in nanopore sequencing. Electrophoresis 33, 3418–3428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leggett, R. M. & Clark, M. D. A world of opportunities with nanopore sequencing. J. Exp. Bot. 68, 5419–5429 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Noakes, M. T. et al. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nat. Biotechnol. 37, 651–656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. & Deamer, D. W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stoddart, D. et al. Nucleobase recognition in ssDNA at the central constriction of the α-hemolysin pore. Nano Lett. 10, 3633–3637 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stoddart, D., Maglia, G., Mikhailova, E., Heron, A. J. & Bayley, H. Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew. Chem. Int. Ed. Engl. 49, 556–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M. & Gundlach, J. H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl Acad. Sci. USA 105, 20647–20652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Derrington, I. M. et al. Nanopore DNA sequencing with MspA. Proc. Natl Acad. Sci. USA 107, 16060–16065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niederweis, M. et al. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol. Microbiol. 33, 933–945 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Benner, S. et al. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol. 2, 718–724 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hornblower, B. et al. Single-molecule analysis of DNA–protein complexes using nanopores. Nat. Methods 4, 315–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Cockroft, S. L., Chu, J., Amorin, M. & Ghadiri, M. R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lieberman, K. R. et al. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J. Am. Chem. Soc. 132, 17961–17972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat. Biotechnol. 30, 344–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mason, C. E. & Elemento, O. Faster sequencers, larger datasets, new challenges. Genome Biol. 13, 314 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, Y., Yang, Q. & Wang, Z. The evolution of nanopore sequencing. Front. Genet. 5, 449 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shi, W., Friedman, A. K. & Baker, L. A. Nanopore sensing. Anal. Chem. 89, 157–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Minei, R., Hoshina, R. & Ogura, A. De novo assembly of middle-sized genome using MinION and Illumina sequencers. BMC Genomics 19, 700 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ashton, P. M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Carter, J. M. & Hussain, S. Robust long-read native DNA sequencing using the ONT CsgG Nanopore system. Wellcome Open Res 2, 23 (2017).

    Article  PubMed  Google Scholar 

  32. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20, 129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gong, L. et al. Picky comprehensively detects high-resolution structural variants in nanopore long reads. Nat. Methods 15, 455–460 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brickwedde, A. et al. Structural, physiological and regulatory analysis of maltose transporter genes in Saccharomyces eubayanus CBS 12357T. Front. Microbiol. 9, 1786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zeng, J. et al. Causalcall: nanopore basecalling using a temporal convolutional network. Front. Genet. 10, 1332 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Helmersen, K. & Aamot, H. V. DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing. Sci. Rep. 10, 2985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tytgat, O. et al. Nanopore sequencing of a forensic STR multiplex reveals loci suitable for single-contributor STR profiling. Genes 11, 381 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  38. Huang, Y. T., Liu, P. Y. & Shih, P. W. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biol. 22, 95 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ip, C. L. C. et al. MinION Analysis and Reference Consortium: phase 1 data release and analysis. F1000Res 4, 1075 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jain, M. et al. MinION Analysis and Reference Consortium: phase 2 data release and analysis of R9.0 chemistry. F1000Res 6, 760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res 6, 100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Seki, M. et al. Evaluation and application of RNA-seq by MinION. DNA Res. 26, 55–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Rang, F. J., Kloosterman, W. P. & de Ridder, J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goodwin, S. et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. 25, 1750–1756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. David, M., Dursi, L. J., Yao, D., Boutros, P. C. & Simpson, J. T. Nanocall: an open source basecaller for Oxford Nanopore sequencing data. Bioinformatics 33, 49–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Boza, V., Brejova, B. & Vinar, T. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE 12, e0178751 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gong, L., Wong, C. H., Idol, J., Ngan, C. Y. & Wei, C. L. Ultra-long read sequencing for whole genomic DNA analysis. J. Vis. Exp. https://doi.org/10.3791/58954 (2019).

  49. Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 35, 2193–2198 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Quick, J. & Loman, N. J. in Nanopore Sequencing: An Introduction Ch. 7 (World Scientific Press, 2019).

  51. Deschamps, S. et al. A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat. Commun. 9, 4844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Keller, M. W. et al. Direct RNA sequencing of the coding complete influenza A virus genome. Sci. Rep. 8, 14408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pitt, M. E. et al. Evaluating the genome and resistome of extensively drug-resistant Klebsiella pneumoniae using native DNA and RNA Nanopore sequencing. Gigascience 9, giaa002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cartolano, M., Huettel, B., Hartwig, B., Reinhardt, R. & Schneeberger, K. cDNA library enrichment of full length transcripts for SMRT long read sequencing. PLoS ONE 11, e0157779 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen, Y. et al. A systematic benchmark of Nanopore long read RNA sequencing for transcript level analysis in human cell lines. Preprint at bioRxiv https://doi.org/10.1101/2021.04.21.440736 (2021).

  57. Nicholls, S. M., Quick, J. C., Tang, S. & Loman, N. J. Ultra-deep, long-read nanopore sequencing of mock microbial community standards. Gigascience 8, giz043 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Magi, A., Semeraro, R., Mingrino, A., Giusti, B. & D’Aurizio, R. Nanopore sequencing data analysis: state of the art, applications and challenges. Brief. Bioinform. 19, 1256–1272 (2018).

    CAS  PubMed  Google Scholar 

  59. Cao, M. D., Ganesamoorthy, D., Cooper, M. A. & Coin, L. J. Realtime analysis and visualization of MinION sequencing data with npReader. Bioinformatics 32, 764–766 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Watson, M. et al. poRe: an R package for the visualization and analysis of nanopore sequencing data. Bioinformatics 31, 114–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Leggett, R. M., Heavens, D., Caccamo, M., Clark, M. D. & Davey, R. P. NanoOK: multi-reference alignment analysis of nanopore sequencing data, quality and error profiles. Bioinformatics 32, 142–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Tarraga, J., Gallego, A., Arnau, V., Medina, I. & Dopazo, J. HPG pore: an efficient and scalable framework for nanopore sequencing data. BMC Bioinformatics 17, 107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bolognini, D., Bartalucci, N., Mingrino, A., Vannucchi, A. M. & Magi, A. NanoR: a user-friendly R package to analyze and compare nanopore sequencing data. PLoS ONE 14, e0216471 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Loman, N. J. & Quinlan, A. R. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 30, 3399–3401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Semeraro, R. & Magi, A. PyPore: a python toolbox for nanopore sequencing data handling. Bioinformatics 35, 4445–4447 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Senol Cali, D., Kim, J. S., Ghose, S., Alkan, C. & Mutlu, O. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions. Brief. Bioinform. 20, 1542–1559 (2019).

    Article  PubMed  Google Scholar 

  68. Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. McIntyre, A. B. R. et al. Nanopore sequencing in microgravity. NPJ Microgravity 2, 16035 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Teng, H. et al. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. Gigascience 7, giy037 (2018).

    Article  PubMed Central  Google Scholar 

  71. Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, Y. et al. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res. 29, 1329–1342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Stoiber, M. H. et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. Preprint at bioRxiv https://doi.org/10.1101/094672 (2016).

  75. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ni, P. et al. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35, 4586–4595 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, Q., Georgieva, D. C., Egli, D. & Wang, K. NanoMod: a computational tool to detect DNA modifications using Nanopore long-read sequencing data. BMC Genomics 20, 78 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuen, Z. W. et al. Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing. Nat. Commun. 12, 3438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fang, G. et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. Biotechnol. 30, 1232–1239 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Saletore, Y. et al. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 13, 175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jenjaroenpun, P. et al. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res. 49, e7 (2020).

  84. Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base-specific resolution. RNA 26, 19–28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fu, S., Wang, A. & Au, K. F. A comparative evaluation of hybrid error correction methods for error-prone long reads. Genome Biol. 20, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Viehweger, A. et al. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res. 29, 1545–1554 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lima, L. et al. Comparative assessment of long-read error correction software applied to Nanopore RNA-sequencing data. Brief. Bioinform. 21, 1164–1181 (2019).

    Article  Google Scholar 

  88. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Salmela, L., Walve, R., Rivals, E. & Ukkonen, E. Accurate self-correction of errors in long reads using de Bruijn graphs. Bioinformatics 33, 799–806 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Au, K. F., Underwood, J. G., Lee, L. & Wong, W. H. Improving PacBio long read accuracy by short read alignment. PLoS ONE 7, e46679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Salmela, L. & Rivals, E. LoRDEC: accurate and efficient long read error correction. Bioinformatics 30, 3506–3514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bao, E. & Lan, L. HALC: high throughput algorithm for long read error correction. BMC Bioinformatics 18, 204 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang, J. R., Holt, J., McMillan, L. & Jones, C. D. FMLRC: hybrid long read error correction using an FM-index. BMC Bioinformatics 19, 50 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Sovic, I. et al. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat. Commun. 7, 11307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou, A., Lin, T. & Xing, J. Evaluating nanopore sequencing data processing pipelines for structural variation identification. Genome Biol. 20, 237 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Marić, J., Sović, I., Križanović, K., Nagarajan, N. & Šikić, M. Graphmap2—splice-aware RNA-seq mapper for long reads. Preprint at bioRxiv https://doi.org/10.1101/720458 (2019).

  103. Liu, B. et al. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index. Genome Biol. 20, 274 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Begik, O. et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat. Biotechnol. 39, 1278–1291 (2021).

  105. Giordano, F. et al. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. Sci. Rep. 7, 3935 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. de Lannoy, C., de Ridder, D. & Risse, J. The long reads ahead: de novo genome assembly using the MinION. F1000Res 6, 1083 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Cretu Stancu, M. et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat. Commun. 8, 1326 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Tham, C. Y. et al. NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing. Genome Biol. 21, 56 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bowden, R. et al. Sequencing of human genomes with nanopore technology. Nat. Commun. 10, 1869 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Edge, P. & Bansal, V. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing. Nat. Commun. 10, 4660 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Schrinner, S. D. et al. Haplotype threading: accurate polyploid phasing from long reads. Genome Biol. 21, 252 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ewing, A. D. et al. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell 80, 915–928 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Bolognini, D., Magi, A., Benes, V., Korbel, J. O. & Rausch, T. TRiCoLOR: tandem repeat profiling using whole-genome long-read sequencing data. Gigascience 9, giaa101 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Byrne, A. et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Oikonomopoulos, S., Wang, Y. C., Djambazian, H., Badescu, D. & Ragoussis, J. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci. Rep. 6, 31602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Volden, R. et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc. Natl Acad. Sci. USA 115, 9726–9731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kuosmanen, A., Sobih, A., Rizzi, R., Mäkinen, V. & Tomescu, A. I. On using longer RNA-seq reads to improve transcript prediction accuracy. In Proc. 9th International Joint Conference on Biomedical Engineering Systems and Technologies 272–277 (BIOSTEC, 2016).

  125. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wyman, D. et al. A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification. Preprint at bioRxiv https://doi.org/10.1101/672931 (2020).

  127. Au, K. F. et al. Characterization of the human ESC transcriptome by hybrid sequencing. Proc. Natl Acad. Sci. USA 110, E4821–E4830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fu, S. et al. IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing. Bioinformatics 34, 2168–2176 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. de la Rubia, I. et al. Reference-free reconstruction and quantification of transcriptomes from Nanopore long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2020.02.08.939942 (2021).

  130. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Soneson, C. et al. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat. Commun. 10, 3359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jain, M. et al. Linear assembly of a human centromere on the Y chromosome. Nat. Biotechnol. 36, 321–323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nurk, S. et al. The complete sequence of a human genome. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445798 (2021).

  136. Tyson, J. R. et al. MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res. 28, 266–274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Salazar, A. N. et al. Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D. FEMS Yeast Res. 17, fox074 (2017).

    Article  PubMed Central  Google Scholar 

  138. Michael, T. P. et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat. Commun. 9, 541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Miller, D. E., Staber, C., Zeitlinger, J. & Hawley, R. S. Highly contiguous genome assemblies of 15 Drosophila species generated using nanopore sequencing. G3 8, 3131–3141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kapustova, V. et al. The dark matter of large cereal genomes: long tandem repeats. Int. J. Mol. Sci. 20, 2483 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  141. Diaz-Viraque, F. et al. Nanopore sequencing significantly improves genome assembly of the protozoan parasite Trypanosoma cruzi. Genome Biol. Evol. 11, 1952–1957 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Datema, E. et al. The megabase-sized fungal genome of Rhizoctonia solani assembled from nanopore reads only. Preprint at bioRxiv https://doi.org/10.1101/084772 (2016).

  143. Austin, C. M. et al. De novo genome assembly and annotation of Australia’s largest freshwater fish, the Murray cod (Maccullochella peelii), from Illumina and Nanopore sequencing read. Gigascience 6, 1–6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tan, M. H. et al. Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. Gigascience 7, 1–6 (2018).

    Article  PubMed  Google Scholar 

  145. Singh, K. S. et al. De novo genome assembly of the Meadow Brown Butterfly, Maniola jurtina. G3 10, 1477–1484 (2020).

  146. Lind, A. L. et al. Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat. Ecol. Evol. 3, 1241–1252 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dhar, R. et al. De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing. Gigascience 8, giz038 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Armstrong, E. E. et al. Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data. BMC Biol. 18, 3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kono, N. et al. The bagworm genome reveals a unique fibroin gene that provides high tensile strength. Commun. Biol. 2, 148 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wongsurawat, T. et al. Rapid sequencing of multiple RNA viruses in their native form. Front. Microbiol. 10, 260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Moore, S. C. et al. Amplicon based MinION sequencing of SARS-CoV-2 and metagenomic characterisation of nasopharyngeal swabs from patients with COVID-19. Preprint at medRxiv https://doi.org/10.1101/2020.03.05.20032011 (2020).

  154. Taiaroa, G. et al. Direct RNA sequencing and early evolution of SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2020.03.05.976167 (2020).

  155. Wang, M. et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small 16, e2002169 (2020).

    Article  PubMed  Google Scholar 

  156. Bayega, A. et al. De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly. BMC Genomics 21, 259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kadobianskyi, M., Schulze, L., Schuelke, M. & Judkewitz, B. Hybrid genome assembly and annotation of Danionella translucida. Sci. Data 6, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bai, C. M. et al. Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C. Gigascience 8, giz067 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Belser, C. et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 4, 879–887 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Marrano, A. et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 9, giaa050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ning, D. L. et al. Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis. Gigascience 9, giaa006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kwan, H. H. et al. The genome of the Steller Sea Lion (Eumetopias jubatus). Genes 10, 486 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  163. Scott, A. D. et al. The giant sequoia genome and proliferation of disease resistance genes. Preprint at bioRxiv https://doi.org/10.1101/2020.03.17.995944 (2020).

  164. Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nat. Biotechnol. 38, 1044–1053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. De Coster, W. et al. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res. 29, 1178–1187 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Roach, N. P. et al. The full-length transcriptome of C. elegans using direct RNA sequencing. Genome Res. 30, 299–312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife 9, e49658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jiang, F. et al. Long-read direct RNA sequencing by 5′-cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol. 16, 950–959 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhang, J. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836–845 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Xin, R. et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat. Commun. 12, 266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Laszlo, A. H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl Acad. Sci. USA 110, 18904–18909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl Acad. Sci. USA 110, 18910–18915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. McIntyre, A. B. R. et al. Single-molecule sequencing detection of N6-methyladenine in microbial reference materials. Nat. Commun. 10, 579 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Shipony, Z. et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319–327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Georgieva, D., Liu, Q., Wang, K. & Egli, D. Detection of base analogs incorporated during DNA replication by nanopore sequencing. Nucleic Acids Res. 48, e88 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hennion, M. et al. Mapping DNA replication with nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/426858 (2018).

  179. Muller, C. A. et al. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat. Methods 16, 429–436 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Ulahannan, N. et al. Nanopore sequencing of DNA concatemers reveals higher-order features of chromatin structure. Preprint at bioRxiv https://doi.org/10.1101/833590 (2019).

  181. Altemose, N. et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome-wide. Preprint at bioRxiv https://doi.org/10.1101/2021.07.06.451383 (2021).

  182. Weng, Z. et al. Long-range single-molecule mapping of chromatin modification in eukaryotes. Preprint at bioRxiv https://doi.org/10.1101/2021.07.08.451578 (2021).

  183. Smith, A. M., Jain, M., Mulroney, L., Garalde, D. R. & Akeson, M. Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS ONE 14, e0216709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Aw, J. G. A. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat. Biotechnol. 39, 336–346 (2020).

    Article  PubMed  Google Scholar 

  185. Stephenson, W. et al. Direct detection of RNA modifications and structure using single molecule nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2020.05.31.126763 (2020).

  186. Maier, K. C., Gressel, S., Cramer, P. & Schwalb, B. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res. 30, 1332–1344 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Minervini, C. F. et al. TP53 gene mutation analysis in chronic lymphocytic leukemia by nanopore MinION sequencing. Diagn. Pathol. 11, 96 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Minervini, C. F. et al. Mutational analysis in BCR-ABL1 positive leukemia by deep sequencing based on nanopore MinION technology. Exp. Mol. Pathol. 103, 33–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Orsini, P. et al. Design and MinION testing of a nanopore targeted gene sequencing panel for chronic lymphocytic leukemia. Sci. Rep. 8, 11798 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Cumbo, C. et al. Genomic BCR-ABL1 breakpoint characterization by a multi-strategy approach for “personalized monitoring” of residual disease in chronic myeloid leukemia patients. Oncotarget 9, 10978–10986 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Au, C. H. et al. Rapid detection of chromosomal translocation and precise breakpoint characterization in acute myeloid leukemia by nanopore long-read sequencing. Cancer Genet. 239, 22–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Euskirchen, P. et al. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol. 134, 691–703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pradhan, B. et al. Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing. Sci. Rep. 7, 14521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Norris, A. L., Workman, R. E., Fan, Y., Eshleman, J. R. & Timp, W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther. 17, 246–253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Suzuki, A. et al. Sequencing and phasing cancer mutations in lung cancers using a long-read portable sequencer. DNA Res. 24, 585–596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gabrieli, T. et al. Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Res. 46, e87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Jeck, W. R. et al. A nanopore sequencing-based assay for rapid detection of gene fusions. J. Mol. Diagn. 21, 58–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Moon, J. et al. Rapid diagnosis of bacterial meningitis by nanopore 16S amplicon sequencing: a pilot study. Int. J. Med. Microbiol. 309, 151338 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat. Biotechnol. 37, 783–792 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Cheng, J. et al. Identification of pathogens in culture-negative infective endocarditis cases by metagenomic analysis. Ann. Clin. Microbiol Antimicrob. 17, 43 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gorrie, C. L. et al. Antimicrobial-resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin. Infect. Dis. 67, 161–170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sanderson, N. D. et al. Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices. BMC Genomics 19, 714 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Schmidt, K. et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104–114 (2016).

    Article  PubMed  Google Scholar 

  205. Lu, X. et al. Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006–2016. EBioMedicine 42, 133–144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hu, Y., Fang, L., Nicholson, C. & Wang, K. Implications of error-prone long-read whole-genome shotgun sequencing on characterizing reference microbiomes. iScience 23, 101223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. De Roeck, A. et al. NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION. Genome Biol. 20, 239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Chatron, N. et al. Severe hemophilia A caused by an unbalanced chromosomal rearrangement identified using nanopore sequencing. J. Thromb. Haemost. 17, 1097–1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Brandler, W. M. et al. Paternally inherited cis-regulatory structural variants are associated with autism. Science 360, 327–331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Carvalho, C. M. B. et al. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med. 11, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Miao, H. et al. Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis. Hereditas 155, 32 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Dutta, U. R. et al. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing. Genomics 111, 1108–1114 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Ishiura, H. et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat. Genet. 50, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Zeng, S. et al. Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy. J. Med. Genet. 56, 265–270 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Leija-Salazar, M. et al. Evaluation of the detection of GBA missense mutations and other variants using the Oxford Nanopore MinION. Mol. Genet Genom. Med 7, e564 (2019).

    Article  Google Scholar 

  216. Lang, K. et al. Full-length HLA class I genotyping with the MinION nanopore sequencer. Methods Mol. Biol. 1802, 155–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Liu, C. et al. Accurate typing of human leukocyte antigen class I genes by Oxford Nanopore sequencing. J. Mol. Diagn. 20, 428–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Duke, J. L. et al. Resolving MiSeq-generated ambiguities in HLA-DPB1 typing by using the Oxford Nanopore Technology. J. Mol. Diagn. 21, 852–861 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wei, S. & Williams, Z. Rapid short-read sequencing and aneuploidy detection using MinION nanopore technology. Genetics 202, 37–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Quick, J. et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16, 114 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361, 894–899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. de Jesus, J. G. et al. Genomic detection of a virus lineage replacement event of dengue virus serotype 2 in Brazil, 2019. Mem. Inst. Oswaldo Cruz 115, e190423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Russell, J. A. et al. Unbiased strain-typing of arbovirus directly from mosquitoes using nanopore sequencing: a field-forward biosurveillance protocol. Sci. Rep. 8, 5417 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Kafetzopoulou, L. E. et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363, 74–77 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Brynildsrud, O. B. et al. Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa. Proc. Natl Acad. Sci. USA 115, 5510–5515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Dong, N., Yang, X., Zhang, R., Chan, E. W. & Chen, S. Tracking microevolution events among ST11 carbapenemase-producing hypervirulent Klebsiella pneumoniae outbreak strains. Emerg. Microbes Infect. 7, 146 (2018).

    Article  PubMed  Google Scholar 

  229. Rhodes, J. et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg. Microbes Infect. 7, 43 (2018).

    PubMed  PubMed Central  Google Scholar 

  230. Hamner, S. et al. Metagenomic profiling of microbial pathogens in the Little Bighorn River, Montana. Int. J. Environ. Res. Public Health 16, 1097 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  231. Boykin, L. M. et al. Tree Lab: portable genomics for early detection of plant viruses and pests in sub-Saharan Africa. Genes 10, 632 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  232. Zaaijer, S. et al. Rapid re-identification of human samples using portable DNA sequencing. eLife 6, e27798 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Runtuwene, L. R., Tuda, J. S. B., Mongan, A. E. & Suzuki, Y. On-site MinION sequencing. Adv. Exp. Med. Biol. 1129, 143–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  234. Sutton, M. A. et al. Radiation tolerance of nanopore sequencing technology for life detection on Mars and Europa. Sci. Rep. 9, 5370 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the International Space Station. Sci. Rep. 7, 18022 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Ducluzeau, A., Lekanoff, R. M., Khalsa, N. S., Smith, H. H. & Drown, D. M. Introducing DNA sequencing to the next generation on a research vessel sailing the Bering Sea through a storm. Preprint at Preprints https://doi.org/10.20944/preprints201905.0113.v1 (2019).

  237. Edwards, A. et al. In-field metagenome and 16S rRNA gene amplicon nanopore sequencing robustly characterize glacier microbiota. Preprint at bioRxiv https://doi.org/10.1101/073965 (2019).

  238. Blanco, M. B. et al. Next-generation technologies applied to age-old challenges in Madagascar. Conserv. Genet. 21, 785–793 (2020).

    Article  Google Scholar 

  239. Pushkarev, D., Neff, N. F. & Quake, S. R. Single-molecule sequencing of an individual human genome. Nat. Biotechnol. 27, 847–850 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    Article  CAS  PubMed  Google Scholar 

  241. Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    Article  CAS  PubMed  Google Scholar 

  242. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  244. Gershow, M. & Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol. 2, 775–779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Seo, J. S. et al. De novo assembly and phasing of a Korean human genome. Nature 538, 243–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  246. Boza, V., Peresini, P., Brejova, B. & Vinar, T. DeepNano-blitz: a fast base caller for MinION nanopore sequencers. Bioinformatics 36, 4191–4192 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Stoiber, M. & Brown, J. BasecRAWller: streaming nanopore basecalling directly from raw signal. Preprint at bioRxiv https://doi.org/10.1101/133058 (2017).

  248. Wang, S., Li, Z., Yu, Y. & Gao, X. WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets. Quant. Biol. 6, 359–368 (2018).

    Article  CAS  Google Scholar 

  249. Miculinić, N., Ratković, M. & Šikić, M. MinCall-MinION end2end convolutional deep learning basecaller. Preprint at https://arxiv.org/abs/1904.10337 (2019).

  250. Zhang, Y. et al. Nanopore basecalling from a perspective of instance segmentation. BMC Bioinformatics 21, 136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Lv, X., Chen, Z., Lu, Y. & Yang, Y. An end-to-end Oxford Nanopore basecaller using convolution-augmented transformer. 2020 IEEE Intl. Conf. Bioinformatics and Biomedicine (BIBM) 1, 337–342 (2020).

    Article  Google Scholar 

  252. Huang, N., Nie, F., Ni, P., Luo, F. & Wang, J. SACall: a neural network basecaller for Oxford Nanopore sequencing data based on self-attention mechanism. IEEE/ACM Trans. Comput. Biol. Bioinform. https://doi.org/10.1109/TCBB.2020.3039244 (2020).

  253. Konishi, H., Yamaguchi, R., Yamaguchi, K., Furukawa, Y. & Imoto, S. Halcyon: an accurate basecaller exploiting an encoder-decoder model with monotonic attention. Bioinformatics 37, 1211–1217 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Xu, Z. et al. Fast-Bonito: a faster basecaller for nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2020.10.08.318535 (2020).

  255. Fukasawa, Y., Ermini, L., Wang, H., Carty, K. & Cheung, M. S. LongQC: a quality control tool for third generation sequencing long read data. G3 10, 1193–1196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Leger, A. & Leonardi, T. pycoQC, interactive quality control for Oxford Nanopore Sequencing. J. Open Source Softw. 4, 1236 (2019).

  257. Lanfear, R., Schalamun, M., Kainer, D., Wang, W. & Schwessinger, B. MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics 35, 523–525 (2019).

    Article  CAS  PubMed  Google Scholar 

  258. Yin, Z. et al. RabbitQC: high-speed scalable quality control for sequencing data. Bioinformatics 37, 573–574 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 396–411 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  260. Ferguson, J. M. & Smith, M. A. SquiggleKit: a toolkit for manipulating nanopore signal data. Bioinformatics 35, 5372–5373 (2019).

    Article  CAS  PubMed  Google Scholar 

  261. Cheetham, S. W., Kindlova, M. & Ewing, A. D. Methylartist: tools for visualising modified bases from nanopore sequence data. Preprint at bioRxiv https://doi.org/10.1101/2021.07.22.453313 (2021).

  262. Su, S. et al. NanoMethViz: an R/Bioconductor package for visualizing long-read methylation data. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426757 (2021).

  263. De Coster, W., Stovner, E. B. & Strazisar, M. Methplotlib: analysis of modified nucleotides from nanopore sequencing. Bioinformatics 36, 3236–3238 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00949-w (2021).

  265. Leger, A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/843136 (2019).

  266. Gao, Y. et al. Quantitative profiling of N6-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biol. 22, 22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Parker, M. T., Barton, G. J. & Simpson, G. G. Yanocomp: robust prediction of m6A modifications in individual nanopore direct RNA reads. Preprint at bioRxiv https://doi.org/10.1101/2021.06.15.448494 (2021).

  268. Price, A. M. et al. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 11, 6016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Miclotte, G. et al. Jabba: hybrid error correction for long sequencing reads. Algorithms Mol. Biol. 11, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Lee, H. et al. Error correction and assembly complexity of single molecule sequencing reads. Preprint at bioRxiv https://doi.org/10.1101/006395 (2014).

  271. Morisse, P., Lecroq, T. & Lefebvre, A. Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph. Bioinformatics 34, 4213–4222 (2018).

    Article  CAS  PubMed  Google Scholar 

  272. Madoui, M. A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Holley, G. et al. Ratatosk: hybrid error correction of long reads enables accurate variant calling and assembly. Genome Biol. 22, 28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Hackl, T., Hedrich, R., Schultz, J. & Forster, F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3004–3011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Firtina, C., Bar-Joseph, Z., Alkan, C. & Cicek, A. E. Hercules: a profile HMM-based hybrid error correction algorithm for long reads. Nucleic Acids Res. 46, e125 (2018).

    PubMed  PubMed Central  Google Scholar 

  277. Haghshenas, E., Hach, F., Sahinalp, S. C. & Chauve, C. CoLoRMap: correcting long reads by mapping short reads. Bioinformatics 32, i545–i551 (2016).

    Article  CAS  PubMed  Google Scholar 

  278. Tischler, G. & Myers, E. W. Non hybrid long read consensus using local de Bruijn graph assembly. Preprint at bioRxiv https://doi.org/10.1101/106252 (2017).

  279. Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).

    Article  CAS  PubMed  Google Scholar 

  280. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  281. Bao, E., Xie, F., Song, C. & Song, D. FLAS: fast and high-throughput algorithm for PacBio long-read self-correction. Bioinformatics 35, 3953–3960 (2019).

    Article  CAS  PubMed  Google Scholar 

  282. Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 50–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  283. Wang, L., Qu, L., Yang, L., Wang, Y. & Zhu, H. NanoReviser: an error-correction tool for nanopore sequencing based on a deep learning algorithm. Front. Genet. 11, 900 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Broseus, L. et al. TALC: transcript-level aware long-read correction. Bioinformatics 36, 5000–5006 (2020).

    Article  CAS  PubMed  Google Scholar 

  285. Sahlin, K. & Medvedev, P. Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis. Nat. Commun. 12, 2 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Ren, J. & Chaisson, M. J. P. lra: a long read aligner for sequences and contigs. PLoS Comput. Biol. 17, e1009078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Jain, C., Rhie, A., Hansen, N. F., Koren, S. & Phillippy, A. M. A long read mapping method for highly repetitive reference sequences. Preprint at bioRxiv https://doi.org/10.1101/2020.11.01.363887 (2020).

  289. Jain, C., Koren, S., Dilthey, A., Phillippy, A. M. & Aluru, S. A fast adaptive algorithm for computing whole-genome homology maps. Bioinformatics 34, i748–i756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Amin, M. R., Skiena, S. & Schatz, M. C. NanoBLASTer: fast alignment and characterization of Oxford Nanopore single molecule sequencing reads. In 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences 1–6 (ICCABS, 2016).

  291. Yang, W. & Wang, L. Fast and accurate algorithms for mapping and aligning long reads. J. Comput. Biol. 28, 789–803 (2021).

    Article  CAS  PubMed  Google Scholar 

  292. Rautiainen, M. & Marschall, T. GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biol. 21, 253 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Wei, Z. G., Zhang, S. W. & Liu, F. smsMap: mapping single molecule sequencing reads by locating the alignment starting positions. BMC Bioinformatics 21, 341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Haghshenas, E., Sahinalp, S. C. & Hach, F. lordFAST: sensitive and fast alignment search tool for long noisy read sequencing data. Bioinformatics 35, 20–27 (2019).

    Article  CAS  PubMed  Google Scholar 

  295. Chakraborty, A., Morgenstern, B. & Bandyopadhyay, S. S-conLSH: alignment-free gapped mapping of noisy long reads. BMC Bioinformatics 22, 64 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Joshi, D., Mao, S., Kannan, S. & Diggavi, S. QAlign: aligning nanopore reads accurately using current-level modeling. Bioinformatics 37, 625–633 (2021).

    Article  CAS  PubMed  Google Scholar 

  297. Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics 20, 405 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Hou, L. & Wang, Y. DEEP-LONG: a fast and accurate aligner for long RNA-seq. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-79489/v1 (2020).

  299. Sahlin, K. & Mäkinen, V. Accurate spliced alignment of long RNA sequencing reads. Bioinformatics https://doi.org/10.1093/bioinformatics/btab540 (2021).

  300. Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332–336 (2021).

    Article  Google Scholar 

  302. Chin, C. S. & Khalak, A. Human genome assembly in 100 minutes. Preprint at bioRxiv https://doi.org/10.1101/705616 (2019).

  303. Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A. & Tse, D. N. HINGE: long-read assembly achieves optimal repeat resolution. Genome Res. 27, 747–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Jansen, H. J. et al. Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci. Rep. 7, 7213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Chen, Y. et al. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat. Commun. 12, 60 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    Article  CAS  PubMed  Google Scholar 

  307. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Vaser, R., Sovic, I., Nagarajan, N. & Sikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Huang, N. et al. NeuralPolish: a novel Nanopore polishing method based on alignment matrix construction and orthogonal Bi-GRU Networks. Bioinformatics 11, btab354 (2021).

    Google Scholar 

  310. Shafin, K. et al. Haplotype-aware variant calling enables high accuracy in nanopore long-reads using deep neural networks. Preprint at bioRxiv https://doi.org/10.1101/2021.03.04.433952 (2021).

  311. Zimin, A. V. & Salzberg, S. L. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol. 16, e1007981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Cleal, K. & Baird, D. M. Dysgu: efficient structural variant calling using short or long reads. Preprint at bioRxiv https://doi.org/10.1101/2021.05.28.446147 (2021).

  314. Leung, H. C. et al. SENSV: detecting structural variations with precise breakpoints using low-depth WGS data from a single Oxford Nanopore MinION flowcell. Preprint at bioRxiv https://doi.org/10.1101/2021.04.20.440583 (2021).

  315. Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Feng, Z., Clemente, J. C., Wong, B. & Schadt, E. E. Detecting and phasing minor single-nucleotide variants from long-read sequencing data. Nat. Commun. 12, 3032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Popitsch, N., Preuner, S. & Lion, T. Nanopanel2 calls phased low-frequency variants in Nanopore panel sequencing data. Bioinformatics 16, btab526 (2021).

    Google Scholar 

  318. Luo, R. et al. Exploring the limit of using a deep neural network on pileup data for germline variant calling. Nat. Mach. Intell. 2, 220–227 (2020).

    Article  Google Scholar 

  319. Edge, P., Bafna, V. & Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. Genome Res. 27, 801–812 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Shaw, J. & Yu, Y. W. Practical probabilistic and graphical formulations of long-read polyploid haplotype phasing. Preprint at bioRxiv https://doi.org/10.1101/2020.11.06.371799 (2021).

  321. Klasberg, S., Schmidt, A. H., Lange, V. & Schofl, G. DR2S: an integrated algorithm providing reference-grade haplotype sequences from heterozygous samples. BMC Bioinformatics 22, 236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Zhou, W. et al. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res. 48, 1146–1163 (2020).

    Article  CAS  PubMed  Google Scholar 

  323. Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    Article  CAS  PubMed  Google Scholar 

  324. Marchet, C. et al. De novo clustering of long reads by gene from transcriptomics data. Nucleic Acids Res. 47, e2 (2019).

    Article  CAS  PubMed  Google Scholar 

  325. Sahlin, K. & Medvedev, P. De novo clustering of long-read transcriptome data using a greedy, quality value-based algorithm. J. Comput. Biol. 27, 472–484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Tian, L. et al. Comprehensive characterization of single cell full-length isoforms in human and mouse with long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.243543 (2020).

  327. Hu, Y. et al. LIQA: long-read isoform quantification and analysis. Genome Biol. 22, 182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Rautiainen, M. et al. AERON: transcript quantification and gene-fusion detection using long reads. Preprint at bioRxiv https://doi.org/10.1101/2020.01.27.921338 (2020).

  329. Weirather, J. L. et al. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing. Nucleic Acids Res. 43, e116 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Davidson, N. M. et al. JAFFAL: detecting fusion genes with long read transcriptome sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.441398 (2021).

  331. Liu, Q. et al. LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing. BMC Genomics 21, 793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Deonovic, B., Wang, Y., Weirather, J., Wang, X. J. & Au, K. F. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing. Nucleic Acids Res. 45, e32 (2017).

    Article  PubMed  Google Scholar 

  333. Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.01.22.427687 (2021).

  334. Calus, S. T., Ijaz, U. Z. & Pinto, A. J. NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience 7, giy140 (2018).

    Article  PubMed Central  Google Scholar 

  335. Karst, S. M. et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 18, 165–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  336. Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38, 433–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Cheetham, S. W. et al. Single-molecule simultaneous profiling of DNA methylation and DNA–protein interactions with Nanopore-DamID. Preprint at bioRxiv https://doi.org/10.1101/2021.08.09.455753 (2021).

  338. Hennion, M. et al. FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing. Genome Biol. 21, 125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Philpott, M. et al. Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00965-w (2021).

  340. Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).

  341. Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. High throughput error corrected Nanopore single cell transcriptome sequencing. Nat. Commun. 11, 4025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Bizuayehu, T. T., Labun, K., Jefimov, K. & Valen, E. Single molecule structure sequencing reveals RNA structural dependencies, breathing and ensembles. Preprint at bioRxiv https://doi.org/10.1101/2020.05.18.101402 (2020).

  343. Drexler, H. L. et al. Revealing nascent RNA processing dynamics with nano-COP. Nat. Protoc. 16, 1343–1375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.F.A., Yunhao Wang, Y.Z., A.B. and Yuru Wang are grateful for support from an institutional fund of the Department of Biomedical Informatics, The Ohio State University, and the National Institutes of Health (R01HG008759, R01HG011469 and R01GM136886). The authors apologize to colleagues whose studies were not cited due to length and reference constraints. The authors also apologize that the very latest research published during the publication process of this article was not included. We would like to thank K. Aschheim and G. Riddihough for critical reading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.F.A. designed the outline of the article. Yunhao Wang and A.B. collected information and prepared the materials for the ‘Technology development’ and ‘Data analysis’ sections. Y.Z. collected information and prepared the materials for the ‘Applications of nanopore sequencing’ section. K.F.A., Yunhao Wang, Y.Z. and A.B. wrote and revised the main text. Yuru Wang collected the references for the ‘Applications of nanopore sequencing’ section and prepared Fig. 1.

Corresponding author

Correspondence to Kin Fai Au.

Ethics declarations

Competing interests

K.F.A. was invited by ONT to present at the conference London Calling 2020.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table

Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, Y., Bollas, A. et al. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 39, 1348–1365 (2021). https://doi.org/10.1038/s41587-021-01108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-021-01108-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research