Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancing siRNA efficacy in vivo with extended nucleic acid backbones

Abstract

Therapeutic small interfering RNA (siRNA) requires sugar and backbone modifications to inhibit nuclease degradation. However, metabolic stabilization by phosphorothioate (PS), the only backbone chemistry used clinically, may be insufficient for targeting extrahepatic tissues. To improve oligonucleotide stabilization, we report the discovery, synthesis and characterization of extended nucleic acid (exNA) consisting of a methylene insertion between the 5′-C and 5′-OH of a nucleoside. exNA incorporation is compatible with common oligonucleotide synthetic protocols and the PS backbone, provides stabilization against 3′ and 5′ exonucleases and is tolerated at multiple oligonucleotide positions. A combined exNA–PS backbone enhances resistance to 3′ exonuclease by ~32-fold over the conventional PS backbone and by >1,000-fold over the natural phosphodiester backbone, improving tissue exposure, tissue accumulation and efficacy in mice, both systemically and in the brain. The improved efficacy and durability imparted by exNA may enable therapeutic interventions in extrahepatic tissues, both with siRNA and with other oligonucleotides such as CRISPR guide RNA, antisense oligonucleotides, mRNA and tRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structure of natural epigenetic modifications and exNA.
Fig. 2: Thermal stability of rxU-modified RNA–RNA and RNA–DNA duplexes.
Fig. 3: Nuclease resistance of exNA-modified oligonucleotides.
Fig. 4: Position-dependent impact of exNA replacement on siRNA activity in vitro.
Fig. 5: Systemic delivery of DCA-conjugated siRNA with 3′-exNA modification.
Fig. 6: Impact of 3′-exNA modification on siRNA efficacy in the CNS.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon reasonable request. The raw NMR data are included in the Supplementary Information.

References

  1. Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crooke, S. T. et al. RNA targeted therapeutics. Cell Metab. 27, 714–739 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Levin, A. A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med. 380, 57–70 (2019).

    Article  PubMed  Google Scholar 

  4. Shen, X. & Corey, D. R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 46, 1584–1600 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, Y. et al. Delivery of therapeutic small interfering RNA: the current patent-based landscape. Mol. Ther. Nucleic Acids 29, 150–161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Egli, M. & Manoharan, M. Re-engineering RNA molecules into therapeutic agents. Acc. Chem. Res. 52, 1036–1047 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Biscans, A. et al. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res. 48, 7665–7680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gökirmak, T. et al. Overcoming the challenges of tissue delivery for oligonucleotide therapeutics. Trends Pharmacol. Sci. 42, 588–604 (2021).

    Article  PubMed  Google Scholar 

  10. Schlegel, M. K. et al. From bench to bedside: improving the clinical safety of GalNAc–siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res. 50, 6656–6670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mukherjee, D. et al. Analysis of RNA exonucleolytic activities in cellular extracts. Methods Mol. Biol. 257, 193–212 (2004).

    CAS  PubMed  Google Scholar 

  12. Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc–siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res. 48, 11827–11844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allison, H. et al. RNA interference using boranophosphate siRNAs: structure–activity relationship. Nucleic Acids Res. 32, 5991–6000 (2004).

    Article  Google Scholar 

  16. Allison, H. et al. High potency silencing by single-stranded boranophosphate siRNA. Nucleic Acids Res. 34, 2773–2781 (2006).

    Article  Google Scholar 

  17. Maede, B. et al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat. Biotechnol. 32, 1256–1261 (2014).

    Article  Google Scholar 

  18. Hardcastle, T. et al. A single amide linkage in the passenger strand suppresses its activity and enhances guide strand targeting of siRNAs. ACS Chem. Biol. 13, 533–536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richter, M. et al. Amide modifications in the seed region of the guide strand improve the on-target specificity of short interfering RNA. ACS Chem. Biol. 18, 7–11 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun. 9, 723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matsuda, S. et al. The α-(l)-threofuranosyl nucleic acid modification improves stability, potency, safety, and Ago2 binding and mitigates off-target effects of small interfering RNAs. J. Am. Chem. Soc. 145, 19691–19706 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Lima, W. F. et al. Single-stranded siRNAs activate RNAi in animals. Cell 150, 883–894 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Parmar, R. et al. 5′-(E)-Vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA–GalNAc conjugates. ChemBioChem 17, 985–989 (2015).

    Article  Google Scholar 

  24. Elkayam, E. et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5′-end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res. 45, 3528–3536 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Haraszti, R. A. et al. 5′-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Res. 43, 2993–3011 (2015).

    Google Scholar 

  26. Yamada, K. et al. Structurally constrained phosphonate internucleotide linkage impacts oligonucleotide–enzyme interaction, and modulates siRNA activity and allele specificity. Nucleic Acids Res. 49, 12069–12088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kupryushkin, M. S. et al. Phosphoryl guanidines: a new type of nucleic acid analogues. Acta Naturae 6, 116–118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, W. et al. Impact of stereopure chimeric backbone chemistries on the potency and durability of gene silencing by RNA interference. Nucleic Acids Res. 51, 4126–4147 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 24, 374–387 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Schirle, N. T. et al. Structural analysis of human Argonaute-2 bound to a modified siRNA guide. J. Am. Chem. Soc. 138, 8694–8697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, J. et al. Metabolite profiling of the antisense oligonucleotide eluforsen using liquid chromatography–mass spectrometry. Mol. Ther. Nucleic Acids. 17, 714–725 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, J. et al. Nonclinical pharmacokinetics and absorption, distribution, metabolism, and excretion of Givosiran, the first approved N-acetylgalactosamine-conjugated RNA interference therapeutic. Drug Metab. Dispos. 49, 572–580 (2021).

    Article  PubMed  Google Scholar 

  34. Moore, L. D. et al. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Mikhailov, S. N. et al. Use of 5-deoxy-ribo-hexofuranose derivatives for the preparation of 5′-nucleotide phosphonates and homoribonucleosides. Collect. Czech. Chem. Commun. 54, 1055–1066 (1989).

    Article  CAS  Google Scholar 

  36. Robins, M. J. et al. Biomimetic modeling of the decomposition of 2′-chloro-2′-deoxynucleotides by ribonucleotide reductases to give 3(2H)-furanones which can effect mechanism-based inactivation by Michael-type alkylation. J. Am. Chem. Soc. 118, 11317–11318 (1996).

    Article  CAS  Google Scholar 

  37. Haly, B. et al. An extended phosphate linkage: synthesis, hybridization and modeling studies of modified oligonucleotides. Nucleosides Nucleotides 15, 1383–1395 (1996).

  38. Khvorova, A., Roux, L. M. & Yamada, K. Modified oligonucleotides with increased stability. US Patent 2020025017-W (2020); https://portal.unifiedpatents.com/patents/patent/WO-2020198509-A3

  39. Khvorova, A., Roux, L. M. & Yamada, K. Synthetic oligonucleotides having regions of block and cluster modifications. US Patent 20210395739A1 (2021); https://patents.google.com/patent/US20210395739A1/en

  40. Khvorova, A., Roux, L. M. & Yamada, K. Synthesis of modified oligonucleotides with increased stability. US Patent 20220010309A1 (2022); https://patents.google.com/patent/US20220010309A1/en

  41. Traube, F. R. et al. The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol. 14, 1099–1107 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu, R. et al. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct. Target. Ther. 8, 310 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kachare, D. et al. Phospho-carboxylic anhydride of a homologated nucleoside leads to primer degradation in the presence of a polymerase. Bioorg. Med. Chem. 24, 2720–2723 (2014).

    Article  CAS  Google Scholar 

  44. Kel’in, A. V. et al. Structural basis of duplex thermodynamic stability and enhanced nuclease resistance of 5′-C-methyl pyrimidine-modified oligonucleotides. J. Org. Chem. 81, 2261–2279 (2016).

    Article  PubMed  Google Scholar 

  45. Sinha, N. D. et al. β-Cyanoethyl N,N-dialkylamino/N-morpholinomonochloro phosphoramidites, new phosphitylating agents facilitating ease of deprotection and work-up of synthesized oligonucleotides. Tetrahedron Lett. 24, 5843–5846 (1983).

    Article  CAS  Google Scholar 

  46. Clavé, G. et al. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem. Biol. 2, 94–150 (2021).

    Article  PubMed  Google Scholar 

  47. Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Elkayam, E. et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5′ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res. 45, 3528–3536 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Ma, J. B. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alterman, J. F. et al. Hydrophobically modified siRNAs silence Huntingtin mRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids 4, e266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hassler, M. R. et al. Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res. 46, 2185–2196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salomon, W. E. et al. Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakanishi, K. et al. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klum, S. M. et al. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J. 37, 75–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi, Y. siRNA seed region is divided into two functionally different domains in RNA interference in response to 2′-OMe modifications. ACS Omega 7, 2398–2410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shmushkovich, T. et al. Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs. Nucleic Acids Res. 46, 10905–10916 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chu, Y. L. et al. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article  Google Scholar 

  59. Zheng, J. Single modification at position 14 of siRNA strand abolishes its gene-silencing activity by decreasing both RISC loading and target degradation. FASEB J. 27, 4017–4026 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2020).

    Article  Google Scholar 

  62. De, N. et al. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. Mol. Cell. 50, 344–355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kumar, P. et al. Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: altritol-nucleotide (ANA) containing GalNAc-siRNA conjugates: in vitro and in vivo RNAi activity and resistance to 5′-exonuclease. Nucleic Acids Res. 48, 4028–4040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shaw, J.-P. et al. Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res. 19, 747–750 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davis, S. M. et al. 2′-O-Methyl at 20-mer guide strand 3′ termini may negatively affect target silencing activity of fully chemically modified siRNA. Mol. Ther. Nucleic Acids. 21, 266–277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Choung, S. et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 342, 919–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Biscans, A. et al. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res. 47, 1082–1096 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Roehl, I., Schuster, M. & Seiffert, S. Oligonucleotide detection method. US Patent 20110201006-A1 (2011); https://portal.unifiedpatents.com/patents/patent/US-20110201006-A1

  69. Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Slow, E. J. et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12, 1555–1567 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Orans, J. et al. Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family. Cell 145, 212–223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jinek, M. et al. Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol. Cell 41, 600–608 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brautigam, C. A. et al. Structural principles for the inhibition of the 3′–5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J. Mol. Biol. 277, 363–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Springer, A. D. & Dowdy, S. F. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 28, 109–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Laursen, M. B. et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol. Biosyst. 6, 862–870 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Aiba, Y. et al. Allele-selective inhibition of expression of huntingtin and ataxin-3 by RNA duplexes containing unlocked nucleic acid substitutions. Biochemistry 52, 9329–9338 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu, Y. et al. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dolgin, E. tRNA therapeutics burst onto startup scene. Nat. Biotechnol. 40, 283–286 (2022).

    Article  PubMed  Google Scholar 

  81. Barrangou, R. & Doudna, J. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Patutina, O. A. et al. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc. Natl Acad. Sci. USA 117, 32370–32379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nikan, M. et al. Synthesis and evaluation of parenchymal retention and efficacy of a metabolically stable O-phosphocholine-N-docosahexaenoyl-l-serine siRNA conjugate in mouse brain. Bioconjug. Chem. 28, 1758–1756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Westmanu, E. et al. Removal of t-butyldimethylsilyl protection in RNA-synthesis. Triethylamine trihydrofluoride (TEA, 3HF) is a more reliable alternative to tetrabutylammonium fluoride (TBAF). Nucleic Acids Res. 22, 2430–2431 (1994).

    Article  Google Scholar 

  85. Godinho, B. M. D. C. et al. Pharmacokinetic profiling of conjugated therapeutic oligonucleotides: a high-throughput method based upon serial blood microsampling coupled to peptide nucleic acid hybridization assay. Nucleic Acid Ther. 6, 323–334 (2017).

    Article  Google Scholar 

  86. Coles, A. H. et al. A high-throughput method for direct detection of therapeutic oligonucleotide-induced gene silencing in vivo. Nucleic Acid Ther. 26, 86–92 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peng, S. X. et al. Improved pharmacokinetic and bioavailability support of drug discovery using serial blood sampling in mice. J. Pharm. Sci. 98, 1877–1884 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Conroy, F. et al. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington’s disease models. Nat. Commun. 13, 5802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

  90. Brooks, M. E. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (R01 NS104022 to A.K.), S10 (OD020012 to A.K.), Maximizing Investigators’ Research Award (R35 GM131839 to A.K.), NIH CREATE (U01 NS114098 to N.A.), Cure Huntington’s Disease Initiative Foundation (RecID A-5038 to N.A.) and the Berman–Topper Fund (to A.K. and N.A.). The authors would like to thank the University of Massachusetts Chan Medical School Animal Medicine Department and veterinary technicians for contributing to the large-animal studies. Some icons in Figs. 5b and 6b were adapted from BioRender.com. The authors would also like to thank E. Haberlin for proofreading the manuscript, A. Ali for maintaining the infrastructure for nuclear magnetic resonance (NMR) and Y. Tan and S. Nguyen for measurement of high-resolution mass analysis.

Author information

Authors and Affiliations

Authors

Contributions

K.Y. and A.K. conceived the project. K.Y., V.N.H. and A.K. contributed to the experimental design for exNA studies in hepatic and extrahepatic tissues. K.Y., V.N.H., J.C., H.H.F., Q.T., A.B., R.C.F, A.S., C.L. and B.M.D.C.G. conducted the experiments. C.M.F., K.Y., R.M., E.S., J.F.A., M.D., N.A. and A.K. contributed to the experimental design for exNA studies in CNS. C.M.F., R.M., E.S. and J.D.P conducted experiments. K.Y. and N.Y. contributed to the exNA thermal stability and nuclease resistance study. K.Y., N.Y., B.M.B., N.M., S.O.J. and D.E. contributed to the oligonucleotide synthesis. S.H. contributed to the statistical analysis of exNA CNS studies. V.N.H. and M.R.H. gave inspirational intellectual contributions. K.Y. and A.K. wrote the manuscript.

Corresponding authors

Correspondence to Ken Yamada or Anastasia Khvorova.

Ethics declarations

Competing interests

K.Y., V.N.H. and A.K. have filed patent applications for exNA platforms. A.K. discloses ownership of stocks in RXi Pharmaceuticals and Advirna, and is a founder of Atalanta Therapeutics and Comanche Biopharma. V.N.H. is an employee of Comanche Biopharma and owns stock options. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Eriks Rozners and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Synthesis of exNA phosphoramidites (6a and 6b) and exNA-modified oligonucleotide.

Reagent and conditions are as follows: (i) IBX/CH3CN, 85 °C, 1.5–2 h. (ii) CH3PPh3Br, tBuOK, THF, 0 °C then rt, overnight, 2a: 75% (2 steps), 2b: 67% (2 steps). (iii) 9-BBN, THF, 0 °C, overnight. (iv) NaBO3·4H2O, MeOH, THF, H2O, 0 °C then rt, overnight, 3a: 62% (2 steps), 3b: N.D. (v) DMTr-Cl, pyridine, rt, 2 h. (vi) 0.1 M TBAF, THF, rt, 1 h, 5a: 93% (2 steps), 5b: 12% (3 steps). (vii) 2-Cyanoethyl N,N-diisopropylchlorophosphoramidite, DIPEA, CH2Cl2, 0 °C then rt, 0.5 h, 6a: 86%, 6b: 81%. (viii) RNA synthesizer (Supplementary Information).

Supplementary information

Supplementary information

Supplementary Note (general remarks), Figs. 1–9, Tables 1–11, Scheme 1 and Data (synthetic oligonucleotide sequence information, synthesis procedures of compounds, LC–MS data and all raw NMR material data).

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, K., Hariharan, V.N., Caiazzi, J. et al. Enhancing siRNA efficacy in vivo with extended nucleic acid backbones. Nat Biotechnol 43, 904–913 (2025). https://doi.org/10.1038/s41587-024-02336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-024-02336-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing