Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration

Abstract

The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture. In this study, we developed a non-viral genome writing catalyst (GATALYST) system that allows production of circular single-stranded DNAs (cssDNAs) up to approximately 20 kilobases as donor templates for highly efficient precision transgene integration. cssDNA donors enable knock-in efficiency of up to 70% in induced pluripotent stem cells (iPSCs) and improved efficiency in multiple clinically relevant primary immune cell types and at multiple genomic loci implicated for clinical applications with various nuclease editor systems. The high precision and efficiency in chimeric antigen receptor (CAR)-T and natural killer (NK) cells, improved safety, payload flexibility and scalable manufacturability of cssDNA shows potential for future applications of genome engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scalable cssDNA manufacturing and purification from bacteriophage.
Fig. 2: GFP reporter knock-in efficiency and cell viability in K562 cells.
Fig. 3: iPSC engineering with cssDNA.
Fig. 4: Human primary T cell engineering with cssDNA.
Fig. 5: cssDNA non-viral genomic engineering for human primary NK cells, B cells and CD34+ HSPCs.
Fig. 6: Efficient functional CAR-T cell engineering with cssDNA.

Similar content being viewed by others

Data availability

RNA-seq data have been submitted to the Gene Expression Omnibus under accession code GSE278608 (ref. 51).

References

  1. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salsman, J. & Dellaire, G. Precision genome editing in the CRISPR era. Biochem. Cell Biol. 95, 187–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Quadros, R. M. et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 18, 92 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li, H. B. et al. Design and specificity of long ssDNA donors for CRISPR-based knock-in. Preprint at bioRxiv https://doi.org/10.1101/178905 (2019).

  5. Bai, H. et al. CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish. BMC Genomics 21, 67 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miura, H., Quadros, R. M., Gurumurthy, C. B. & Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 13, 195–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Shy, B. R. et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531 (2022).

  8. Iyer, S. et al. Efficient homology-directed repair with circular single-stranded DNA donors. CRISPR J. 5, 685–701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Won, M. & Dawid, I. B. PCR artifact in testing for homologous recombination in genomic editing in zebrafish. PLoS ONE 12, e0172802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wurtele, H., Little, K. C. & Chartrand, P. Illegitimate DNA integration in mammalian cells. Gene Ther. 10, 1791–1799 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Zorin, B., Hegemann, P. & Sizova, I. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot. Cell 4, 1264–1272 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fire, A. & Xu, S. Q. Rolling replication of short DNA circles. Proc. Natl Acad. Sci. USA 92, 4641–4645 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huh, J. H. & Shan, Q. Targeted genome modification using circular single-stranded DNA. US patent application. https://patentimages.storage.googleapis.com/0a/96/dd/4875c018c5faad/US20210340571A1.pdf (2021).

  15. Cha, T. et al. Genetic control of aerogel and nanofoam properties, applied to Ni–MnOx cathode design. Adv. Funct. Mater. 31, 2010867 (2021).

  16. Tatiossian, K. J. et al. Rational selection of CRISPR–Cas9 guide RNAs for homology-directed genome editing. Mol. Ther. 29, 1057–1069 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Kath, J. et al. Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells. Mol. Ther. Methods Clin. Dev. 25, 311–330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Briard, B., Place, D. E. & Kanneganti, T. D. DNA sensing in the innate immune response. Physiology (Bethesda) 35, 112–124 (2020).

    CAS  PubMed  Google Scholar 

  19. Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zahid, A., Ismail, H., Li, B. & Jin, T. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front. Immunol. 11, 613039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gopalappa, R., Suresh, B., Ramakrishna, S. & Kim, H. H. Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. Nucleic Acids Res. 46, e71 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schubert, M. S. et al. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Sci. Rep. 11, 19482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bin Moon, S. et al. Highly efficient genome editing by CRISPR–Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat. Commun. 9, 3651 (2018).

    Article  Google Scholar 

  26. Liu, Y. et al. Engineering cell signaling using tunable CRISPR–Cpf1-based transcription factors. Nat. Commun. 8, 2095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Odak, A. et al. Novel extragenic genomic safe harbors for precise therapeutic T cell engineering. Blood 141, 2698–2712 (2023).

  29. Hung, K. L. et al. Engineering protein-secreting plasma cells by homology-directed repair in primary human B cells. Mol. Ther. 26, 456–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, M. J., Laoharawee, K., Lahr, W. S., Webber, B. R. & Moriarity, B. S. Engineering of primary human B cells with CRISPR/Cas9 targeted nuclease. Sci. Rep. 8, 12144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Aiuti, A. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott–Aldrich syndrome. Science 341, 1233151 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sessa, M. et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 388, 476–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Qin, H. et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol. Ther. Oncolytics 11, 127–137 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27, 1419–1431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng, Z., Chinnasamy, N. & Morgan, R. A. Protein L: a novel reagent for the detection of chimeric antigen receptor (CAR) expression by flow cytometry. J. Transl. Med. 10, 29 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Codner, G. F. et al. Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol. 16, 70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lanza, D. G. et al. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol. 16, 69 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xiao, Q. et al. Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV. Mol. Genet. Genomics 293, 1051–1060 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Du, J. et al. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair. DNA Repair (Amst.) 70, 67–71 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Dokshin, G. A., Ghanta, K. S., Piscopo, K. M. & Mello, C. C. Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics. 210, 781–787 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Veneziano, R. et al. In vitro synthesis of gene-length single-stranded DNA. Sci. Rep. 8, 6548 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shepherd, T. R., Du, R. R., Huang, H., Wamhoff, E. C. & Bathe, M. Bioproduction of pure, kilobase-scale single-stranded DNA. Sci. Rep. 9, 6121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nafisi, P. M., Aksel, T. & Douglas, S. M. Construction of a novel phagemid to produce custom DNA origami scaffolds. Synth. Biol. (Oxf.) 3, ysy015 (2018).

  46. Liang, X., Kuhn, H. & Frank-Kamenetskii, M. D. Monitoring single-stranded DNA secondary structure formation by determining the topological state of DNA catenanes. Biophys. J. 90, 2877–2889 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y. et al. Highly efficient generation of biallelic reporter gene knock-in mice via CRISPR-mediated genome editing of ESCs. Protein Cell 7, 152–156 (2016).

    Article  PubMed  Google Scholar 

  49. He, X. et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44, e85 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ye, L. et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc. Natl Acad. Sci. USA 111, 9591–9596 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xie, K. et al. Whole transcriptome analysis of human primary activated pan CD4/CD8 T cells treated with mRNA, double-stranded DNA or circular single stranded DNA. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE278608 (2024).

Download references

Acknowledgements

We thank T. Cha for designing and cloning initial phagemid constructs and for guidance and suggestions on cssDNA production. We thank Quintara Biosciences for plasmid construction and DNA/RNA sequencing service for this project; LumiGenics for the in vivo CAR-T functional assays; and MaxCyte for technical support and suggestions for the electroporation experiment. We also thank M. C. Lorence for comments and suggestions on the manuscript. Cartoon illustrations were generated with BioRender. This study was partially funded by Small Business Innovation Research (SBIR) to Stellate DNA LLC (grant award ID: 2052290).

Author information

Authors and Affiliations

Authors

Contributions

H.W., R.S. and K.X. conceived the idea for this project. K.X. and H.W. designed the experiments and interpreted the data. K.X., J.S., I.M., J.W., K.R. T.T., D.L., S.N. and J.F. performed the experiments. K.X. and H.W. oversaw the study. K.X. and H.W. wrote the manuscript, with input from all other authors.

Corresponding authors

Correspondence to Keqiang Xie or Hao Wu.

Ethics declarations

Competing interests

K.X., J.S., I.M., J.W., K.R., T.T., D.L., S.N., J.F., R.S. and H.W. are either current or former employees of Full Circles Therapeutics. Patents related to this study have been filed. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Krishanu Saha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Starzyk, J., Majumdar, I. et al. Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration. Nat Biotechnol 43, 1821–1832 (2025). https://doi.org/10.1038/s41587-024-02504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-024-02504-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research