Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Antimicrobial peptide delivery to lung as peptibody mRNA in anti-inflammatory lipids treats multidrug-resistant bacterial pneumonia

Abstract

The efficacy of antimicrobial peptides (AMPs) is limited by challenges of delivery and potency. We enhance AMP performance in the lung by converting AMPs to a peptibody format that fuses AMPs with fragment crystallizable domains to activate innate immunity and cathelin domains for infection-responsive activation, with their mRNA constructs delivered by anti-inflammatory lipid nanoparticles. The highest-scoring design outperforms antibiotic therapy approved by the US Food and Drug Administration in multidrug-resistant pneumonia models, eradicating representative MDR bacteria while mitigating inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and construction of mRNA-encoded PBs.
Fig. 2: Therapeutic effects of TS41S LNP PB9 mRNA in acute pneumonia models.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Metlay, J. P. et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 200, e45–e67 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pragman, A. A., Berger, J. P. & Williams, B. J. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms. Clin. Pulm. Med. 23, 57–66 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mettelman, R. C., Allen, E. K. & Thomas, P. G. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 55, 749–780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hewitt, R. J. & Lloyd, C. M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 21, 347–362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cookson, W. O., Cox, M. J. & Moffatt, M. F. New opportunities for managing acute and chronic lung infections. Nat. Rev. Microbiol. 16, 111–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Parmanik, A. et al. Current treatment strategies against multidrug-resistant bacteria: a review. Curr. Microbiol. 79, 388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grief, S. N. & Loza, J. K. Guidelines for the evaluation and treatment of pneumonia. Prim. Care: Clin. Off. Pract. 45, 485–503 (2018).

    Article  Google Scholar 

  8. Kellum, J. A. et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the genetic and inflammatory markers of sepsis (GenIMS) study. Arch. Intern. Med. 167, 1655–1663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar, V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front. Immunol. 11, 1722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Dijksteel, G. S., Ulrich, M. M., Middelkoop, E. & Boekema, B. K. Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front. Microbiol. 12, 616979 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Izadpanah, A. & Gallo, R. L. Antimicrobial peptides. J. Am. Acad. Dermatol. 52, 381–390 (2005).

    Article  PubMed  Google Scholar 

  13. Zhang, L.-j. & Gallo, R. L. Antimicrobial peptides. Curr. Biol. 26, R14–R19 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Di, Y. P., Kuhn, J. M. & Mangoni, M. L. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol. Rev. 104, 1643–1677 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahlapuu, M., Björn, C. & Ekblom, J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit. Rev. Biotechnol. 40, 978–992 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinstraesser, L. et al. Skin electroporation of a plasmid encoding hCAP-18/LL-37 host defense peptide promotes wound healing. Mol. Ther. 22, 734–742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pyzik, M., Kozicky, L. K., Gandhi, A. K. & Blumberg, R. S. The therapeutic age of the neonatal Fc receptor. Nat. Rev. Immunol. 23, 415–432 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Czajkowsky, D. M., Hu, J., Shao, Z. & Pleass, R. J. Fc-fusion proteins: new developments and future perspectives. EMBO Mol. Med. 4, 1015–1028 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levin, D., Golding, B., Strome, S. E. & Sauna, Z. E. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol. 33, 27–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Dürr, U. H., Sudheendra, U. S. & Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta 1758, 1408–1425 (2006).

    Article  PubMed  Google Scholar 

  22. Sørensen, O. E. et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97, 3951–3959 (2001).

    Article  PubMed  Google Scholar 

  23. Park, M. D., Silvin, A., Ginhoux, F. & Merad, M. Macrophages in health and disease. Cell 185, 4259–4279 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosales, C. & Uribe-Querol, E. Phagocytosis: a fundamental process in immunity. BioMed. Res. Int. 2017, 9042851 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Uribe-Querol, E. & Rosales, C. Phagocytosis: our current understanding of a universal biological process. Front. Immunol. 11, 1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell. Mol. Immunol. 19, 177–191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saxton, R. A., Glassman, C. R. & Garcia, K. C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 22, 21–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, X., He, D., Pan, Z., Luo, G. & Deng, J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 11, 100124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, S. et al. Accelerating diabetic wound healing by ROS-scavenging lipid nanoparticle–mRNA formulation. Proc. Natl Acad. Sci. USA 121, e2322935121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maciá, M. D. et al. Efficacy and potential for resistance selection of antipseudomonal treatments in a mouse model of lung infection by hypermutable Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 50, 975–983 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 4, 18033 (2018).

    Article  PubMed  Google Scholar 

  35. Zeng, C. et al. Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens in vivo. Adv. Mater. 32, 2004452 (2020).

    Article  CAS  Google Scholar 

  36. Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, C. et al. Blood–brain-barrier-crossing lipid nanoparticles for mRNA delivery to the central nervous system. Nat. Mater. 24, 1653–1663 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, M. et al. Dual SORT LNPs for multi-organ base editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02675-z (2025).

  39. Devkota, S. P., Onah, C., Joshi, P. R., Adhikari, S. & Baral, P. Optimized method for higher yield of alveolar macrophage isolation for ex vivo studies. Heliyon 10, e37221 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xue, Y. et al. LNP–RNA-mediated antigen presentation leverages SARS-CoV-2-specific immunity for cancer treatment. Nat. Commun. 16, 2198 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, S. et al. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Prim. 3, 63 (2023).

    Article  CAS  Google Scholar 

  42. Mukherjee, A. et al. Engineered mutant α-ENaC subunit mRNA delivered by lipid nanoparticles reduces amiloride currents in cystic fibrosis-based cell and mice models. Sci. Adv. 6, eabc5911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).

  44. Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mrna through inhalation. ACS Nano 16, 14792–14806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Facchini, M., De Fino, I., Riva, C. & Bragonzi, A. Long term chronic Pseudomonas aeruginosa airway infection in mice. J. Vis. Exp. 85, 51019 (2014).

    Google Scholar 

  47. van den Berg, E. et al. Role of the Fas/FasL system in a model of RSV infection in mechanically ventilated mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L451–L460 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.D. acknowledges support from the Maximizing Investigators’ Research Award (R35GM144117) from the National Institute of General Medical Sciences and institutional funds from the Icahn School of Medicine at Mount Sinai. We thank the Biorepository and Pathology CoRE Laboratory at the Icahn School of Medicine at Mount Sinai for their support. Cryo-electron microscopy was performed at the Center for Electron Microscopy and Analysis at The Ohio State University. We are grateful to E. Purisic and J. Dai for sharing the vibratome and providing instructions. Certain figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

Y.X., X.H. and S.W. conceptualized the work, performed the experiments, analyzed the data and wrote the paper. Y. Zhang., C.W. and C.Y. contributed to the lipid synthesis. Y. Zhong., D.D.K. and Y.Y.Z. contributed to the mRNA synthesis. H.L., Z.L., M.T. and D.C. contributed to the animal studies. B.D. contributed to the cryo-electron microscopy imaging. P.H. and M.M. contributed to the collection of human lung tissues. Y.D. conceptualized and supervised the project and wrote the paper. The final paper was edited and approved by all authors.

Corresponding authors

Correspondence to Xucheng Hou or Yizhou Dong.

Ethics declarations

Competing interests

Y.D. is a cofounder and holds equity in Immunanoengineering Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterizations of TS LNPs for pulmonary mRNA delivery.

a, Relative luminescence intensity of TS LNP-FLuc mRNA in MLG cells. Intensity was normalized to SM-102 LNP group. b, Relative luminescence intensity of TS LNP-FLuc mRNA in A549 cells. Intensity was normalized to SM-102 LNP group. c, Luminescence intensity in the lungs of mice intratracheally injected with TS LNPs-FLuc mRNA. d, Representative IVIS images of lung tissues from c. e, Luminescence intensity in the lungs of mice following IT injection of SM-102 LNP-FLuc mRNA, TS41 LNP-FLuc mRNA, or TS41S LNP-FLuc mRNA. f, Representative IVIS images of lung tissues from e. g, Schematic illustration showing that delivery of Cre recombinase mRNA induces tdTomato expression in Ai14 reporter mice through Cre-mediated recombination. h, Flow cytometry analysis of tdTomato expression in various lung cell types following IT injection of SM-102 LNP-Cre mRNA or TS41S LNP-Cre mRNA. All data are from n = 3 biologically independent samples and are presented as mean values ± s.d. Statistical significance was determined by one-way ANOVA followed by Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Source Data

Extended Data Fig. 2 Optimization of TS41 LNP formulation using orthogonal assay.

a, Table for two rounds of TS41 LNP optimization. Chol, cholesterol. b, Orthogonal assay to evaluate the impact trends of individual lipid component in TS41 LNP formulation at four levels in MLG cells. c, Luminescence intensity fold changes of the two rounds of optimization in MLG cells. d, Orthogonal assay to evaluate the impact trends of individual lipid component in TS41 LNP formulation at four levels in A549 cells. e, Luminescence intensity fold changes of the two rounds of optimization in A549 cells. f, Hydrodynamic diameter and PDI of TS41S LNP. PDI, polydispersity index. g, Zeta potential and encapsulation efficiency of TS41S LNP. h, Representative Cryo-TEM image of TS41S LNP. Scale bar = 100 nm. Data in b-g are from n = 3 biologically independent samples. Data in b and d are plotted as floating bar charts, where each bar represents the range of luminescence intensity from a start value (minimum intensity) to an end value (maximum intensity), with a line indicating the mean intensity. Data in c and e-g are presented as mean values ± SD. Statistical significance was determined by one-way ANOVA followed by Dunnett’s multiple comparison test. **P < 0.01, ****P < 0.0001.

Source Data

Extended Data Fig. 3 Anti-inflammatory ability of TS41S LNP in pneumonia lung.

a, Flow cytometry analysis of ROS levels in neutrophils, alveolar macrophages and monocyte-derived macrophages in bronchoalveolar lavage fluid (BALF) from pneumonia lung treated with different LNPs. b, Percentage and cell number of infiltrating neutrophils among total immune cells in BALF. c, Expression level of inducible nitric oxide synthase (iNOS) in neutrophils. d, e, f, g, Expression level of IL-1β (d), IL-6 (e), TNF-α (f), and IFN-γ (g) in BALF. All data are from n = 5 biologically independent samples and are presented as mean values ± SD. Statistical significance was determined by one-way ANOVA followed by Dunnett’s multiple comparison test. n.s. not significant P > 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Source Data

Extended Data Fig. 4 Therapeutic effects of TS41S LNP-PB9 mRNA in chronic pneumonia models.

a, Treatment scheme for chronic pneumonia models induced by S. aureus infection or co-infection of S. aureus and P. aeruginosa. b, Relative body weight for each group in chronic pneumonia model of S. aureus infection. c, Quantification of bacteria load in the lung tissues of each group in chronic pneumonia model of S. aureus infection. d, Relative body weight for each group in chronic pneumonia model of S. aureus and P. aeruginosa co-infection. e, Quantification of bacteria load in the lung tissues of each group in chronic pneumonia model of S. aureus and P. aeruginosa co-infection. All data are from n = 5 (b and c) or 6 (d and e) biologically independent samples and are presented as mean values ± SD. Statistical significance was determined by one-way ANOVA followed by Dunnett’s multiple comparison test. **P < 0.01, ***P < 0.001, ****P < 0.0001. Panel a created using BioRender.com.

Source Data

Supplementary information

Supplementary Information

Supplementary Figs. 1–13.

Reporting Summary

Supplementary Data 1

Unprocessed western blots and statistical source data.

Source data

Source Data Fig. 1

Unprocessed western blots and statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Extended Data Figs. 1–4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Hou, X., Wang, S. et al. Antimicrobial peptide delivery to lung as peptibody mRNA in anti-inflammatory lipids treats multidrug-resistant bacterial pneumonia. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41587-025-02928-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research