Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pilot phase clinical trial of a wearable, electrochemical aptamer-based patch for continuous drug concentration measurement

Abstract

As some drugs have narrow therapeutic windows and high inter-patient exposure variability, they require concentration measurements to ensure their safe and effective dosing. To improve on the current practice of sparse blood sampling, we are developing wearable ‘patches’ bearing electrochemical aptamer-based sensors on small, solid needles. Here we describe a pilot phase trial testing their safety and performance in six healthy human participants. The patches were found to be safe and nearly pain free, and they captured concentrations of vancomycin in the dermal interstitial fluid with 5-minute resolution over 24 hours, although, due to sensor degradation, we primarily describe data from the first 12 hours after insertion. Fitting interstitial fluid and plasma concentrations to compartmental pharmacokinetic models revealed distribution and clearance dynamics that are not detected with current sparse sampling approaches. Patches placed at different bodily sites exhibited consistent trends both within and across participants. With further testing and optimization, including real-time wireless data transmission, such patches could aid precision dosing of vancomycin and other drugs with narrow therapeutic windows. Australian New Zealand Clinical Trials Registry registration: ACTRN12622000280707.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EAB sensors were deployed as wearable, minimally invasive ‘patches’.
Fig. 2: Continuous measurements of vancomycin in situ in the dermal ISF of humans.
Fig. 3: Within-patch reproducibility is quite good over the course of the first 12 hours but then degrades.
Fig. 4: ISF pharmacokinetics do not vary systematically between locations on the body.
Fig. 5: ISF vancomycin concentration measurements are well described by a simple, compartmental model that uses only two parameters to capture the ISF timecourses.

Data availability

The data supporting the findings of the study are included in the article and its Supplementary Information. The clinical study protocol is also included as supplementary information, as is a repository link to the custom code employed in this study76. The clinical study (ACTRN12622000280707) can be publicly searched on the Australian New Zealand Clinical Trials Registry. The deidentified individual participant concentration versus time data that underlie the results reported in this article are available in the supplementary information files. Limited further details are available upon request by researchers who provide a methodologically sound proposal. The data will be available beginning 3 months after publication with no end date. Proposals should be directed to info@nutromics.com. To gain access, data requestors will need to sign a data access agreement. Source data are provided with this paper.

Code availability

The custom analytical code used for pharmacokinetic modeling is available via Zenodo at https://doi.org/10.5281/zenodo.17931398 (ref. 76).

References

  1. Abdel Jalil, M. H. et al. Vancomycin prescribing and therapeutic drug monitoring: challenges of real clinical practice. PLoS ONE 18, e0285717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chan, J. O. S. et al. Barriers and facilitators of appropriate vancomycin use: prescribing context is key. Eur. J. Clin. Pharmacol. 74, 1523–1529 (2018).

    Article  PubMed  Google Scholar 

  3. Reuter, S. E. et al. Optimal practice for vancomycin therapeutic drug monitoring: position statement from the anti-infectives committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther. Drug Monit. 44, 121–132 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Yi, Z.-M. et al. Status and quality of guidelines for therapeutic drug monitoring based on AGREE II instrument. Clin. Pharmacokinet. 62, 1201–1217 (2023).

    Article  PubMed  Google Scholar 

  5. Pai Mangalore, R. et al. Beta-lactam antibiotic therapeutic drug monitoring in critically ill patients: a systematic review and meta-analysis. Clin. Infect. Dis. 75, 1848–1860 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sanz-Codina, M., Bozkir, H. Ö, Jorda, A. & Zeitlinger, M. Individualized antimicrobial dose optimization: a systematic review and meta-analysis of randomized controlled trials. Clin. Microbiol. Infect. 29, 845–857 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, N. et al. Efficacy of therapeutic drug monitoring-based antibiotic regimen in critically ill patients: a systematic review and meta-analysis of randomized controlled trials. J. Intensive Care 11, 48 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Begg, E. J., Barclay, M. L. & Kirkpatrick, C. M. J. The therapeutic monitoring of antimicrobial agents. Br. J. Clin. Pharmacol. 52, 35–43 (2001).

    Article  Google Scholar 

  9. Xiao, Y., Lubin, A. A., Heeger, A. J. & Plaxco, K. W. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed. 44, 5456–5459 (2005).

    Article  CAS  Google Scholar 

  10. Alkhamis, O. et al. High-affinity aptamers for in vitro and in vivo cocaine sensing. J. Am. Chem. Soc. 146, 3230–3240 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arroyo-Currás, N. et al. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl Acad. Sci. USA 114, 645–650 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arroyo-Currás, N. et al. Subsecond-resolved molecular measurements in the living body using chronoamperometrically interrogated aptamer-based sensors. ACS Sens. 3, 360–366 (2018).

    Article  PubMed  Google Scholar 

  13. Arroyo-Currás, N. et al. High-precision control of plasma drug levels using feedback-controlled dosing. ACS Pharmacol. Transl. Sci. 1, 110–118 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chamorro-Garcia, A. et al. Real-time, seconds-resolved measurements of plasma methotrexate in situ in the living body. ACS Sens. 8, 150–157 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Dauphin-Ducharme, P. et al. Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sens. 4, 2832–2837 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gerson, J. et al. High-precision monitoring of and feedback control over drug concentrations in the brains of freely moving rats. Sci. Adv. 9, eadg3254 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerson, J. et al. A high-precision view of intercompartmental drug transport via simultaneous, seconds-resolved, in situ measurements in the vein and brain. Br. J. Pharmacol. 181, 3869–3885 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Idili, A. et al. Seconds-resolved pharmacokinetic measurements of the chemotherapeutic irinotecan in situ in the living body. Chem. Sci. 10, 8164–8170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Idili, A., Gerson, J., Kippin, T. & Plaxco, K. W. Seconds-resolved, in situ measurements of plasma phenylalanine disposition kinetics in living rats. Anal. Chem. 93, 4023–4032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, S. et al. Implantable hydrogel-protective DNA aptamer-based sensor supports accurate, continuous electrochemical analysis of drugs at multiple sites in living rats. ACS Nano 17, 18525–18538 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Li, H. et al. High frequency, calibration-free molecular measurements in situ in the living body. Chem. Sci. 10, 10843–10848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, S. et al. Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8, eabq4539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin, S.-N. et al. Real-time monitoring of daunorubicin pharmacokinetics with nanoporous electrochemical aptamer-based sensors in vivo. Sens. Actuators B Chem. 411, 135710 (2024).

    Article  CAS  Google Scholar 

  24. Roehrich, B. et al. Calibration-free, seconds-resolved in vivo molecular measurements using Fourier-transform impedance spectroscopy interrogation of electrochemical aptamer sensors. ACS Sens. 8, 3051–3059 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seo, J.-W. et al. Real-time monitoring of drug pharmacokinetics within tumor tissue in live animals. Sci. Adv. 8, eabk2901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shaver, A. et al. Optimization of vancomycin aptamer sequence length increases the sensitivity of electrochemical, aptamer-based sensors in vivo. ACS Sens. 7, 3895–3905 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vieira, P. A. et al. Ultra-high-precision, in-vivo pharmacokinetic measurements highlight the need for and a route toward more highly personalized medicine. Front. Mol. Biosci. 16, 6 (2019).

    Google Scholar 

  28. Bakhshandeh, F. et al. Wearable Aptalyzer integrates microneedle and electrochemical sensing for in vivo monitoring of glucose and lactate in live animals. Adv. Mater. 36, 2313743 (2024).

    Article  CAS  Google Scholar 

  29. Emmons, N. A. et al. Feedback control over plasma drug concentrations achieves rapid and accurate control over solid-tissue drug concentrations. ACS Pharmacol. Transl. Sci. 8, 1416−1423 (2025).

  30. Kiang, T. K. L., Schmitt, V., Ensom, M. H. H., Chua, B. & Häfeli, U. O. Therapeutic drug monitoring in interstitial fluid: a feasibility study using a comprehensive panel of drugs. J. Pharm. Sci. 101, 4642–4652 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Tran, B. Q. et al. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J. Proteome Res. 17, 479–485 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Sprunger, Y., Longo, J., Saeidi, A. & Ionescu, A. M. Bridging blood and skin: biomarker profiling in dermal interstitial fluid (dISF) for minimally invasive diagnostics. Biosensors 15, 301 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 12, eaaw0285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, Z. et al. Interstitial fluid-based wearable biosensors for minimally invasive healthcare and biomedical applications. Commun. Mater. 5, 33 (2024).

    Article  CAS  Google Scholar 

  35. U.S. Food and Drug Administration. Device Classification Under Section 513(f)(2) (De Novo): Biolinq Shine Autonomous Time-in-Range Microsensor. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm?id=DEN240080 (2025).

  36. Zhu, J. et al. Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid. Small 16, 1905910 (2020).

    Article  CAS  Google Scholar 

  37. Friedel, M. et al. Continuous molecular monitoring of human dermal interstitial fluid with microneedle-enabled electrochemical aptamer sensors. Lab. Chip 23, 3289–3299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keyvani, F. et al. Integrated electrochemical aptamer biosensing and colorimetric pH monitoring via hydrogel microneedle assays for assessing antibiotic treatment. Adv. Sci. 11, 2309027 (2024).

    Article  CAS  Google Scholar 

  39. Ranamukhaarachchi, S. A. et al. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci. Rep. 6, 29075 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan, R. et al. Integrated microneedle aptasensing platform toward point-of-care monitoring of bacterial infections and treatment. ACS Sens. 10, 5684–5693 (2025).

    Article  PubMed  Google Scholar 

  41. Reynoso, M. et al. 3D-printed, aptamer-based microneedle sensor arrays using magnetic placement on live rats for pharmacokinetic measurements in interstitial fluid. Biosens. Bioelectron. 244, 115802 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Rybak, M. J. et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 77, 835–864 (2020).

    Article  PubMed  Google Scholar 

  43. D’Amico, H. et al. Acute kidney injury associated with area under the curve versus trough monitoring of vancomycin in obese patients. Antimicrob. Agents Chemother. 66, e00886–21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Neely, M. N. et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob. Agents Chemother. 62, e02042-17 (2018).

  45. Pai, M. P., Neely, M., Rodvold, K. A. & Lodise, T. P. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv. Drug Deliv. Rev. 77, 50–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Stewart, J. J. et al. A Canadian perspective on the revised 2020 ASHP–IDSA–PIDS–SIDP guidelines for vancomycin AUC-based therapeutic drug monitoring for serious MRSA infections. J. Assoc. Med. Microbiol. Infect. Dis. Can. 6, 3–9 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Stocker, S. L. et al. Evaluation of a pilot vancomycin precision dosing advisory service on target exposure attainment using an interrupted time series analysis. Clin. Pharmacol. Ther. 109, 212–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Aljefri, D. M. et al. Vancomycin area under the curve and acute kidney injury: a meta-analysis. Clin. Infect. Dis. 69, 1881–1887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Drennan, P. G., Begg, E. J., Gardiner, S. J., Kirkpatrick, C. M. J. & Chambers, S. T. The dosing and monitoring of vancomycin: what is the best way forward? Int. J. Antimicrob. Agents 53, 401–407 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Bradley, N., Lee, Y. & Sadeia, M. Assessment of the implementation of AUC dosing and monitoring practices with vancomycin at hospitals across the United States. J. Pharm. Pract. 35, 864–869 (2022).

    Article  PubMed  Google Scholar 

  51. Dauphin-Ducharme, P., Ploense, K. L., Arroyo-Currás, N., Kippin, T. E. & Plaxco, K. W. Electrochemical aptamer-based sensors: a platform approach to high-frequency molecular monitoring in situ in the living body. in Biomedical Engineering Technologies: Volume 1 (eds Ossandon, M. R., Baker, H. & Rasooly, A.) 479–492 (Springer, 2022).

  52. U.S. Food and Drug Administration. Bioanalytical method validation: guidance for industry. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (2018).

  53. Rüsch, D., Koch, T., Spies, M. & Eberhart, L. H. J. Pain during venous cannulation. Dtsch. Arztebl. Int. 114, 605–611 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Leung, K. K., Downs, A. M., Ortega, G., Kurnik, M. & Plaxco, K. W. Elucidating the mechanisms underlying the signal drift of electrochemical aptamer-based sensors in whole blood. ACS Sens. 6, 3340–3347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leung, K. K. et al. The use of xenonucleic acids significantly reduces the in vivo drift of electrochemical aptamer-based sensors. Angew. Chem. Int. Ed. 63, e202316678 (2024).

    Article  CAS  Google Scholar 

  56. Pham, J. D. et al. On the blood components contributing to the drift of electrochemical aptamer-based biosensors. ACS Sens. 10, 5160–5165 (2025).

    Article  CAS  PubMed  Google Scholar 

  57. Ningrum, V. D. A., Amalia, S. P. & Wibowo, A. Vancomycin bioanalysis for TDM services by using immunoassay and HPLC: a scoping review. Pharm. Educ. 24, 197–203 (2024).

    Article  Google Scholar 

  58. Abraham, J. et al. Plasma and interstitial fluid population pharmacokinetics of vancomycin in critically ill patients with sepsis. Int. J. Antimicrob. Agents 53, 137–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Kolluru, C. et al. Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch. Biomed. Microdevices 21, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ito, Y., Inagaki, Y., Kobuchi, S., Takada, K. & Sakaeda, T. Therapeutic drug monitoring of vancomycin in dermal interstitial fluid using dissolving microneedles. Int. J. Med. Sci. 13, 271–276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hariri, G. et al. Narrative review: clinical assessment of peripheral tissue perfusion in septic shock. Ann. Intensive Care 9, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Heller, A. Integrated medical feedback systems for drug delivery. AIChE J. 51, 1054–1066 (2005).

    Article  CAS  Google Scholar 

  63. D’Souza, D., Thaivalappil Padmanabhan, P., Batchelor, R. & Yin, W. Aptamer sequences and uses thereof. International patent, WO2025123084 (2025).

  64. Bakestani, R. M. et al. Carboxylate-terminated electrode surfaces improve the performance of electrochemical aptamer-based sensors. ACS Appl. Mater. Interfaces 17, 8706–8714 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Groenendaal, W., von Basum, G., Schmidt, K. A., Hilbers, P. A. J. & van Riel, N. A. W. Quantifying the composition of human skin for glucose sensor development. J. Diabetes Sci. Technol 4, 1032–1040 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. 7, 1541–1555 (2023).

    Article  PubMed  Google Scholar 

  67. Oyaert, M. et al. Factors impacting unbound vancomycin concentrations in different patient populations. Antimicrob. Agents Chemother. 59, 7073–7079 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Butterfield, J. M. et al. Refining vancomycin protein binding estimates: identification of clinical factors that influence protein binding. Antimicrob. Agents Chemother. 55, 4277–4282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Urakami, T., Oka, Y., Matono, T. & Aoki, Y. Factors affecting free vancomycin concentration and target attainment of free area under the concentration-time curve. J. Pharm. Health Care Sci. 11, 13 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fetter, L. C., McDonough, M. H., Kippin, T. E. & Plaxco, K. W. Effects of physiological-scale variation in cations, pH, and temperature on the calibration of electrochemical aptamer-based sensors. ACS Sens. 9, 6675–6684 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ljung, L. System Identification: Theory for the User 2nd edn (Prentice Hall, 1999).

  73. Ogata, K. Modern Control Engineering 5th edn (Prentice Hall, 2010).

  74. Wächter, A. & Biegler, L. T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006).

    Article  Google Scholar 

  75. Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B. &Diehl, M. CasADi: a software framework for nonlinear optimization and optimal control. Math. Program. Comput. https://doi.org/10.1007/s12532-018-0139-4 (2018).

  76. Erdal, M. K. Custom code for "Pilot-phase clinical trial of wearable electrochemical-aptamer-based patches for continuous drug concentration measurement" by MA Booth, MK Erdal, SL Stocker, KW Plaxco et. al. Zenodo https://doi.org/10.5281/zenodo.17931397 (2025).

Download references

Acknowledgements

The authors acknowledge both our volunteer participants and the many other colleagues, consultants and collaborators who contributed to this effort. This includes the clinical study team at Monash Health (S. Warner, I. De Jong, K. Cabral, D. Suarez-Borinaga and V. Vasquez-Ferriggi), A. Beshiri, Cardinal Bioresearch, G. Chiampas, L. Chiampas, C. Conway, R. Crowder, C. Dejrangsi, R. Day, R. Kirubakaran, H. Mehta, V. Seah, A. Schafer, M. Stojanovic, R. Wilkie, P. Vranes and T. Yahya. Nutromics was awarded a CRC-P grant (Round 6) by the Australian Federal Government, which helped support the studies presented here. J.J.G. also acknowledges the Australian Research Council for an Industry Laureate Fellowship (IL240100091). R.H.B. is an Australian National Industry PhD candidate (award no. 35006).

Author information

Authors and Affiliations

Authors

Contributions

M.A.B., M.K.E., S.L.S. and K.W.P. were the primary authors of the manuscript. M.A.B. contributed to the sensor development and calibration. M.K.E. performed the pharmacokinetic modeling, with guidance from S.L.S., C.M.J.K. and K.W.P. G.C. led the engineering and sensor teams, which consisted of M.L., M.A.B., M.F., V.R.G., A.A., F.M., J.L., N.H., S.T., J.W., S.K., J.V.E., S.B., L.D., D.D., W.Y., P.T.P., R.H.B. and A.F. A.H., J.J.G., S.L.S. and K.W.P. contributed supervision and strategic scientific input. E.B., S.P., M.B., C.M.J.K. and S.L.S. performed or guided the design and conduct of the clinical trial. J.G. and T.E.K. performed the animal histology studies.

Corresponding authors

Correspondence to Sophie L. Stocker or Kevin W. Plaxco.

Ethics declarations

Competing interests

M.A.B., M.K.E., M.L., M.F., V.R.G., A.A., F.M., J.L., N.H., S.T., J.W., S.K., J.V.E., S.B., L.D., J.G., D.D., W.Y., P.T.P., R.H.B., A.F. and G.C. are employees of and own equity in Nutromics Pty Ltd., which is focused on the commercialization of EAB sensors for applications in biomedical research and clinical practice. E.B. was formerly an employee of Nutromics. A.H., V.R.G., C.M.J.K., J.J.G., S.L.S. and K.W.P. are paid consultants for and/or own equity in Nutromics Pty Ltd. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1−12 and Supplementary Tables 1−8.

Reporting Summary

Supplementary Data

Clinical study protocol.

Source data

Source Data Fig. 1

Applied and estimated concentration values in µg ml1.

Source Data Fig. 2

Concentration timecourses in plasma and ISF in µg ml1.

Source Data Fig. 3

Various representative concentration timecourses in plasma and ISF in µg ml1.

Source Data Fig. 4

Mean concentration timecourses in ISF for various patch positions in µg ml1.

Source Data Fig. 5

Plasma and mean ISF concentration timecourse for each patch position on each volunteer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Booth, M.A., Erdal, M.K., Larson, M. et al. Pilot phase clinical trial of a wearable, electrochemical aptamer-based patch for continuous drug concentration measurement. Nat Biotechnol (2026). https://doi.org/10.1038/s41587-026-03010-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41587-026-03010-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing