Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene discovery and biological insights into anxiety disorders from a large-scale multi-ancestry genome-wide association study

Abstract

We leveraged information from more than 1.2 million participants, including 97,383 cases, to investigate the genetics of anxiety disorders across five continental groups. Through ancestry-specific and cross-ancestry genome-wide association studies, we identified 51 anxiety-associated loci, 39 of which were novel. In addition, polygenic risk scores derived from individuals of European descent were associated with anxiety in African, admixed American and East Asian groups. The heritability of anxiety was enriched for genes expressed in the limbic system, cerebral cortex, cerebellum, metencephalon, entorhinal cortex and brain stem. Transcriptome-wide and proteome-wide analyses highlighted 115 genes associated with anxiety through brain-specific and cross-tissue regulation. Anxiety also showed global and local genetic correlations with depression, schizophrenia and bipolar disorder and widespread pleiotropy with several physical health domains. Overall, this study expands our knowledge regarding the genetic risk and pathogenesis of anxiety disorders, highlighting the importance of investigating diverse populations and integrating multi-omics information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic correlations among anxiety phenotypes assessed in EUR participants.
Fig. 2: gSEM applied to anxiety phenotypes assessed in EUR individuals.
Fig. 3: Manhattan plots of genome-wide, transcriptome-wide and proteome-wide association statistics (bottom, center and top, respectively) related to ANX.
Fig. 4: Within-ancestry and cross-ancestry PRS associations of ANX.
Fig. 5: ANX pleiotropy with other psychiatric disorders.
Fig. 6: Phenome-wide genetic correlations of ANX.

Similar content being viewed by others

Data availability

The genome-wide association statistics generated by the current study are available in Zenodo (https://doi.org/10.5281/zenodo.13135834)105. GWAS-data-related cohorts included in this study were derived from the following sources: AoU, https://workbench.researchallofus.org/; FinnGen, https://www.finngen.fi/en/access_results; iPSYCH, https://ipsych.dk/en/research/downloads; MVP, https://www.ncbi.nlm.nih.gov/projects/gap/; PGC, https://pgc.unc.edu/for-researchers/download-results/; UKB, https://pan.ukbb.broadinstitute.org/.

Code availability

The study used the following computational packages: gSEM, https://github.com/GenomicSEM/GenomicSEM; METAL, https://github.com/statgen/METAL; GCTA-COJO, https://yanglab.westlake.edu.cn/software/gcta/#COJO; PAINTOR, https://github.com/gkichaev/PAINTOR_V3.0; LDSC, https://github.com/bulik/ldsc; PRS-CS, https://github.com/getian107/PRScs; PLINK, https://www.cog-genomics.org/plink/; MetaXcan, https://github.com/hakyimlab/MetaXcan; FUSION, https://github.com/gusevlab/fusion_twas; HyPrColoc, https://github.com/cnfoley/hyprcoloc; LAVA, https://github.com/josefin-werme/LAVA; MixeR, https://github.com/precimed/mixer; LCV, https://github.com/lukejoconnor/LCV; CAUSE, https://github.com/jean997/cause; MRlap, https://github.com/n-mounier/MRlap.

References

  1. Szuhany, K. L. & Simon, N. M. Anxiety disorders: a review. JAMA 328, 2431–2445 (2022).

    CAS  PubMed  Google Scholar 

  2. Mutz, J., Choudhury, U., Zhao, J. & Dregan, A. Frailty in individuals with depression, bipolar disorder and anxiety disorders: longitudinal analyses of all-cause mortality. BMC Med. 20, 274 (2022).

    PubMed  PubMed Central  Google Scholar 

  3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association, 2013).

  4. Penninx, B. W. J. H., Pine, D. S., Holmes, E. A. & Reif, A. Anxiety disorders. Lancet 397, 914–927 (2021).

    PubMed  PubMed Central  Google Scholar 

  5. Meier, S. M. & Deckert, J. Genetics of anxiety disorders. Curr. Psychiatry Rep. 21, 16 (2019).

    PubMed  Google Scholar 

  6. Hettema, J. M., Neale, M. C. & Kendler, K. S. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am. J. Psychiatry 158, 1568–1578 (2001).

    CAS  PubMed  Google Scholar 

  7. Purves, K. L. et al. A major role for common genetic variation in anxiety disorders. Mol. Psychiatry 25, 3292–3303 (2020).

    CAS  PubMed  Google Scholar 

  8. Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391–1399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Levey, D. F. et al. Reproducible genetic risk loci for anxiety: results from 200,000 participants in the Million Veteran Program. Am. J. Psychiatry 177, 223–232 (2020).

    PubMed  PubMed Central  Google Scholar 

  10. Hettema, J. M. et al. Genome-wide association study of shared liability to anxiety disorders in Army STARRS. Am. J. Med. Genet. B Neuropsychiatr. Genet. 183, 197–207 (2020).

    CAS  PubMed  Google Scholar 

  11. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Meng, X. et al. Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference. Nat. Genet. 56, 222–233 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nievergelt, C. M. et al. Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder. Nat. Genet. 56, 792–808 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Burstein, D. et al. Detecting and adjusting for hidden biases due to phenotype misclassification in genome-wide association studies. Preprint at www.medrxiv.org/content/10.1101/2023.01.17.23284670v1 (2023).

  15. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    PubMed  PubMed Central  Google Scholar 

  16. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Als, T. D. et al. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat. Med. 29, 1832–1844 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stein, M. B. et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat. Genet. 53, 174–184 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, W. et al. Genome-wide meta-analysis, functional genomics and integrative analyses implicate new risk genes and therapeutic targets for anxiety disorders. Nat. Hum. Behav. 8, 361–379 (2024).

  21. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    PubMed  PubMed Central  Google Scholar 

  23. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Consortium, G. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Google Scholar 

  27. Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 15, e1007889 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cotto, K. C. et al. DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 46, D1068–D1073 (2018).

    CAS  PubMed  Google Scholar 

  30. Foley, C. N. et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Nat. Commun. 12, 764 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C. A. An integrated framework for local genetic correlation analysis. Nat. Genet. 54, 274–282 (2022).

    CAS  PubMed  Google Scholar 

  33. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Verma, A. et al. Diversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program. Science 385, eadj1182 (2023).

    Google Scholar 

  36. O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728–1734 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Morrison, J., Knoblauch, N., Marcus, J. H., Stephens, M. & He, X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat. Genet. 52, 740–747 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mounier, N. & Kutalik, Z. Bias correction for inverse variance weighting Mendelian randomization. Genet. Epidemiol. 47, 314–331 (2023).

    CAS  PubMed  Google Scholar 

  39. Meier, S. M. et al. Genetic variants associated with anxiety and stress-related disorders: a genome-wide association study and mouse-model study. JAMA Psychiatry 76, 924–932 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Karlsson Linnér, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367–1376 (2021).

    PubMed  Google Scholar 

  42. Cross-Disorder Group of the Psychiatric Genomics Consortium.Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e11 (2019).

    PubMed Central  Google Scholar 

  43. Otsuka, K. et al. A testis-specific long noncoding RNA, Start, is a regulator of steroidogenesis in mouse Leydig cells. Front. Endocrinol. 12, 665874 (2021).

    Google Scholar 

  44. Domonkos, E., Hodosy, J., Ostatníková, D. & Celec, P. On the role of testosterone in anxiety-like behavior across life in experimental rodents. Front. Endocrinol. 9, 441 (2018).

    Google Scholar 

  45. Hou, Y. et al. Schizophrenia-associated rs4702 G allele-specific downregulation of FURIN expression by miR-338-3p reduces BDNF production. Schizophr. Res 199, 176–180 (2018).

    PubMed  Google Scholar 

  46. Wang, M., Xie, Y. & Qin, D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res. Bull. 166, 172–184 (2021).

    CAS  PubMed  Google Scholar 

  47. Zuloaga, D. G., Heck, A. L., De Guzman, R. M. & Handa, R. J. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol. Sex. Differ. 11, 44 (2020).

    PubMed  PubMed Central  Google Scholar 

  48. Wendt, F. R. et al. Sex-specific genetic and transcriptomic liability to neuroticism. Biol. Psychiatry 93, 243–252 (2023).

    CAS  PubMed  Google Scholar 

  49. Wendt, F. R. et al. Sex-stratified gene-by-environment genome-wide interaction study of trauma, posttraumatic-stress, and suicidality. Neurobiol. Stress 14, 100309 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Narita, A. et al. Clustering by phenotype and genome-wide association study in autism. Transl. Psychiatry 10, 290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shadrin, A. A. et al. Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology. Neuroimage 244, 118603 (2021).

    CAS  PubMed  Google Scholar 

  52. Brouwers, M. C. G. J. Fructose 1-phosphate, an evolutionary signaling molecule of abundancy. Trends Endocrinol. Metab. 33, 680–689 (2022).

    CAS  PubMed  Google Scholar 

  53. Hyldgaard Andersen, S., Black, T., Grassi-Oliveira, R. & Wegener, G. Can early-life high fructose exposure induce long-term depression and anxiety-like behaviours? – A preclinical systematic review. Brain Res. 1814, 148427 (2023).

    CAS  PubMed  Google Scholar 

  54. Pathak, G. A. et al. Genetically regulated multi-omics study for symptom clusters of posttraumatic stress disorder highlights pleiotropy with hematologic and cardio-metabolic traits. Mol. Psychiatry 27, 1394–1404 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Elia, L. P., Yamamoto, M., Zang, K. & Reichardt, L. F. p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51, 43–56 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ryu, T. et al. Improved memory and reduced anxiety in δ-catenin transgenic mice. Exp. Neurol. 318, 22–31 (2019).

    CAS  PubMed  Google Scholar 

  57. Li, X. et al. Case report: CNNM2 mutations cause damaged brain development and intractable epilepsy in a patient without hypomagnesemia. Front. Genet. 12, 705734 (2021).

    PubMed  PubMed Central  Google Scholar 

  58. Deng, Y. T. et al. Identifying causal genes for depression via integration of the proteome and transcriptome from brain and blood. Mol. Psychiatry 27, 2849–2857 (2022).

    CAS  PubMed  Google Scholar 

  59. Martinez, C. A. et al. Prenatal stress, anxiety and depression alter transcripts, proteins and pathways associated with immune responses at the maternal-fetal interface. Biol. Reprod. 106, 449–462 (2022).

    PubMed  Google Scholar 

  60. Al-Mubarak, B. R. et al. Whole exome sequencing in ADHD trios from single and multi-incident families implicates new candidate genes and highlights polygenic transmission. Eur. J. Hum. Genet. 28, 1098–1110 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shang, M. Y. et al. Genetic associations between bipolar disorder and brain structural phenotypes. Cereb. Cortex 33, 6990–7000 (2023).

    PubMed  Google Scholar 

  62. Gedik, H. et al. Identifying potential risk genes and pathways for neuropsychiatric and substance use disorders using intermediate molecular mediator information. Front. Genet. 14, 1191264 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Meyers, T. J. et al. Transcriptome-wide association study identifies novel candidate susceptibility genes for migraine. HGG Adv. 4, 100211 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Freshour, S. L. et al. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151 (2021).

    CAS  PubMed  Google Scholar 

  65. Wendt, F. R. et al. Characterizing the effect of background selection on the polygenicity of brain-related traits. Genomics 113, 111–119 (2021).

    CAS  PubMed  Google Scholar 

  66. Wendt, F. R., Pathak, G. A., Tylee, D. S., Goswami, A. & Polimanti, R. Heterogeneity and polygenicity in psychiatric disorders: a genome-wide perspective. Chronic Stress 4, 2470547020924844 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Marshall, M. The hidden links between mental disorders. Nature 581, 19–21 (2020).

    CAS  PubMed  Google Scholar 

  68. Huang, Y. C. et al. Anxiety comorbidities in patients with major depressive disorder: the role of attachment. Int J. Psychiatry Clin. Pract. 23, 286–292 (2019).

    CAS  PubMed  Google Scholar 

  69. Thorp, J. G. et al. Symptom-level modelling unravels the shared genetic architecture of anxiety and depression. Nat. Hum. Behav. 5, 1432–1442 (2021).

    PubMed  Google Scholar 

  70. Lawther, A. J. et al. Antioxidant behavioural phenotype in the Immp2l gene knock-out mouse. Genes 14, 1717 (2023).

  71. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    CAS  PubMed  Google Scholar 

  72. Ike, K. G. O. et al. The human neuropsychiatric risk gene Drd2 is necessary for social functioning across evolutionary distant species. Mol. Psychiatry 29, 518 –528 (2023).

  73. Cutando, L. et al. Cerebellar dopamine D2 receptors regulate social behaviors. Nat. Neurosci. 25, 900–911 (2022).

    CAS  PubMed  Google Scholar 

  74. Avramidou, M. et al. Epidemiology of gastrointestinal symptoms in young and middle-aged Swiss adults: prevalences and comorbidities in a longitudinal population cohort over 28 years. BMC Gastroenterol. 18, 21 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Eijsbouts, C. et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet. 53, 1543–1552 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kremer, M., Becker, L. J., Barrot, M. & Yalcin, I. How to study anxiety and depression in rodent models of chronic pain? Eur. J. Neurosci. 53, 236–270 (2021).

    CAS  PubMed  Google Scholar 

  77. Gómez Penedo, J. M. et al. The complex interplay of pain, depression, and anxiety symptoms in patients with chronic pain: a network approach. Clin. J. Pain. 36, 249–259 (2020).

    PubMed  Google Scholar 

  78. Zanoaga, M. D. et al. Brainwide Mendelian randomization study of anxiety disorders and symptoms. Biol. Psychiatry 95, 810–817 (2024).

  79. Denny, J. C. et al. The “All of Us” research program. N. Engl. J. Med. 381, 668–676 (2019).

    PubMed  Google Scholar 

  80. Chang, E. & Mostafa, J. The use of SNOMED CT, 2013-2020: a literature review. J. Am. Med. Inf. Assoc. 28, 2017–2026 (2021).

    Google Scholar 

  81. Chang, C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).

    CAS  PubMed  Google Scholar 

  83. Pedersen, C. B. et al. The iPSYCH2012 case–cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).

    CAS  PubMed  Google Scholar 

  84. Gaziano, J. M. et al. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    PubMed  Google Scholar 

  85. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    CAS  PubMed  Google Scholar 

  88. Grotzinger, A. D., Fuente, J., Privé, F., Nivard, M. G. & Tucker-Drob, E. M. Pervasive downward bias in estimates of liability-scale heritability in genome-wide association study meta-analysis: a simple solution. Biol. Psychiatry 93, 29–36 (2023).

    CAS  PubMed  Google Scholar 

  89. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    PubMed  PubMed Central  Google Scholar 

  92. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    CAS  PubMed  Google Scholar 

  93. Fehrmann, R. S. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).

    CAS  PubMed  Google Scholar 

  94. Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Google Scholar 

  95. Beach, T. G. et al. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 35, 354–389 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Beach, T. G. et al. The Sun Health Research Institute Brain Donation Program: description and experience, 1987–2007. Cell Tissue Bank 9, 229–245 (2008).

    PubMed  PubMed Central  Google Scholar 

  97. Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat. Genet. 55, 198–208 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    PubMed  Google Scholar 

  105. Friligkou, E. & Polimanti, R. Multi-ancestry genome-wide association statistics of anxiety. Zenodo https://doi.org/10.5281/zenodo.13135834 (2024).

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (RF1 MH132337 to R.P., R33 DA047527 to R.P. and K99 AG078503 to G.A.P.), One Mind (to R.P.), the Alzheimer’s Association (Research Fellowship AARF-22-967171 to G.A.P.), the American Foundation for Suicide Prevention (PDF-1-022-21 to B.C.M.), Horizon 2020 (Marie Sklodowska-Curie Individual Fellowship 101028810 to D.K.), the University of Bergen (International Training Grant to S.L.) and the Yale Franke Program in Science and Humanities (to B.C.M.). We also acknowledge the contribution of the participants and the investigators involved in the UKB, the FinnGen Project, the MVP, the AoU Research Program, the iPSYCH study and the PGC. The AoU Research Program is supported by the National Institutes of Health, Office of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 OT2 OD026554; 1 OT2 OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1 OT2 OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA: AOD 16037; Federally Qualified Health Centers: HHSN 263201600085U; Data and Research Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: U24 OD023176; Participant Technology Systems Center: 1 U24 OD023163; Communications and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and Community Partners: 1 OT2 OD025277; 3 OT2 OD025315; 1 OT2 OD025337; 1 OT2 OD025276.

Author information

Authors and Affiliations

Authors

Contributions

E.F. and R.P. designed the study. E.F., S.L., B.C.M., J.S., J.H., G.D., M.D.Z., Z.A., A.P., L.D.L., D.K., D.S.T., G.A.P. and R.P. conducted computational and statistical analyses. E.F., S.L., B.C.M., J.S., J.H., G.D., M.D.Z., Z.A., A.P., L.D.L., A.M., D.K., D.S.T., G.A.P. and R.P. interpreted the results. E.F. and R.P. wrote the initial draft of the manuscript. E.F., S.L., B.C.M., J.S., J.H., G.D., M.D.Z., Z.A., A.P., L.D.L., A.M., D.K., D.S.T., G.A.P. and R.P. provided comments and revised the manuscript. R.P. obtained the primary funding for the study and supervised the analyses.

Corresponding author

Correspondence to Renato Polimanti.

Ethics declarations

Competing interests

R.P. is paid for editorial work on the journal Complex Psychiatry and reports a research grant from Alkermes outside the scope of the present study. D.K. is the founder of EndoCare Therapeutics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–23.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friligkou, E., Løkhammer, S., Cabrera-Mendoza, B. et al. Gene discovery and biological insights into anxiety disorders from a large-scale multi-ancestry genome-wide association study. Nat Genet 56, 2036–2045 (2024). https://doi.org/10.1038/s41588-024-01908-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-024-01908-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing