Abstract
Drug-discovery and drug-development endeavors are laborious, costly and time consuming. These programs can take upward of 12 years and cost US $2.5 billion, with a failure rate of more than 90%. Machine learning (ML) presents an opportunity to improve the drug-discovery process. Indeed, with the growing abundance of public and private large-scale biological and chemical datasets, ML techniques are becoming well positioned as useful tools that can augment the traditional drug-development process. In this Perspective, we discuss the integration of algorithmic methods throughout the preclinical phases of drug discovery. Specifically, we highlight an array of ML-based efforts, across diverse disease areas, to accelerate initial hit discovery, mechanism-of-action (MOA) elucidation and chemical property optimization. With advances in the application of ML across diverse therapeutic areas, we posit that fully ML-integrated drug-discovery pipelines will define the future of drug-development programs.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).
Schenone, M., Dančík, V., Wagner, B. K. & Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).
Ashenden, S. K. in The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry Ch. 6 (Elsevier, 2021).
Smietana, K., Siatkowski, M. & Møller, M. Trends in clinical success rates. Nat. Rev. Drug Discov. 15, 379–380 (2016).
Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).
Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).
Janai, J., Güney, F., Behl, A. & Geiger, A. Computer vision for autonomous vehicles: problems, datasets and state of the art. Found. Trends Comp. Graph. Vis. 12, 1–308 (2020).
Goldberg, S. B. et al. Machine learning and natural language processing in psychotherapy research: alliance as example use case. J. Couns. Psychol. 67, 438–448 (2020).
Peterson, A. A. & Liu, D. R. Small-molecule discovery through DNA-encoded libraries. Nat. Rev. Drug Discov. 22, 699–722 (2023).
Lim, K. S. et al. Machine learning on DNA-encoded library count data using an uncertainty-aware probabilistic loss function. J. Chem. Inf. Model. 62, 2316–2331 (2022).
Hou, R., Xie, C., Gui, Y., Li, G. & Li, X. Machine-learning-based data analysis method for cell-based selection of DNA-encoded libraries. ACS Omega 8, 19057–19071 (2023).
Van de Sande, B. et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22, 496–520 (2023).
Yang, F. et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 4, 852–866 (2022).
Chen, J. et al. Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data. Nat. Commun. 13, 6494 (2022).
Godinez, W. J., Hossain, I., Lazic, S. E., Davies, J. W. & Zhang, X. A multi-scale convolutional neural network for phenotyping high-content cellular images. Bioinformatics 33, 2010–2019 (2017).
Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702 (2020).
Coley, C. W., Barzilay, R., Green, W. H., Jaakkola, T. S. & Jensen, K. F. Convolutional embedding of attributed molecular graphs for physical property prediction. J. Chem. Inf. Model. 57, 1757–1772 (2017).
Jin, W. et al. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc. Natl Acad. Sci. USA 118, e2105070118 (2021).
Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).
Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).
Fernández-De Gortari, E., García-Jacas, C. R., Martinez-Mayorga, K. & Medina-Franco, J. L. Database fingerprint (DFP): an approach to represent molecular databases. J. Cheminform. 9, 9 (2017).
Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01349-8 (2023).
Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).
Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).
Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).
Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).
Gentile, F. et al. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with Deep Docking. Nat. Protoc. 17, 672–697 (2022).
Tropsha, A., Isayev, O., Varnek, A., Schneider, G. & Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nat. Rev. Drug Discov. 23, 141–155 (2024).
Acharya, A. et al. Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J. Chem. Inf. Model.60, 5832–5852 (2020).
Muratov, E. N. et al. A critical overview of computational approaches employed for COVID-19 drug discovery. Chem. Soc. Rev. 50, 9121–9151 (2021).
Sterling, T. & Irwin, J. J. ZINC 15 — ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).
Rossetti, G. G. et al. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Sci. Rep. 12, 2505 (2022).
Reymond, J. L. The chemical space project. Acc. Chem. Res. 48, 722–730 (2015).
Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).
Anstine, D. M. & Isayev, O. Generative models as an emerging paradigm in the chemical sciences. J. Am. Chem. Soc. 145, 8736–8750 (2023).
Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. Preprint at arxiv.org/abs/1802.04364 (2018).
Godinez, W. J. et al. Design of potent antimalarials with generative chemistry. Nat. Mach. Intell. 4, 180–186 (2022).
Walters, W. P. & Murcko, M. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38, 143–145 (2020).
Cesaro, A., Bagheri, M., Torres, M., Wan, F. & de la Fuente-Nunez, C. Deep learning tools to accelerate antibiotic discovery. Expert Opin. Drug Discov. 18, 1245–1257 (2023).
Rezende, D. J. & Mohamed, S. Variational inference with normalizing flows. In Proc. 32nd International Conference on Machine Learning 2, 1530–1538 (PMLR, 2015).
Shekhovtsov, A., Schlesinger, D. & Flach, B. VAE approximation error: ELBO and exponential families. Preprint at arxiv.org/abs/2102.09310 (2021).
Shi, C. et al. GraphAF: a flow-based autoregressive model for molecular graph generation. Preprint at arxiv.org/abs/2001.09382 (2020).
Hoogeboom, E., Satorras, V. G., Vignac, C. & Welling, M. Equivariant diffusion for molecule generation in 3D. In Proc. 39th International Conference on Machine Learning 8867–8887 (2022).
Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988).
Grisoni, F. Chemical language models for de novo drug design: challenges and opportunities. Curr. Opin. Struct. Biol. 79, 102527 (2023).
Flam-Shepherd, D., Zhu, K. & Aspuru-Guzik, A. Language models can learn complex molecular distributions. Nat. Commun. 13, 3293 (2022).
Skinnider, M. A., Greg Stacey, R., Wishart, D. S. & Foster, L. J. Chemical language models enable navigation in sparsely populated chemical space. Nat. Mach. Intell. 3, 759–770 (2021).
Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schneider, G. Generative molecular design in low data regimes. Commun. Chem. 5, 129 (2022).
Ballarotto, M. et al. De novo design of Nurr1 agonists via fragment-augmented generative deep learning in low-data regime. J. Med. Chem. 66, 8170–8177 (2023).
Moret, M. et al. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Nat. Commun. 14, 114 (2023).
Grisoni, F. et al. Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Sci. Adv. 7, 3338–3349 (2021).
Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inf. 37, 1700153 (2018).
Vaswani, A. et al. Attention is all you need. Preprint at arxiv.org/abs/1706.03762 (2023).
Bagal, V., Aggarwal, R., Vinod, P. K. & Priyakumar, U. D. MolGPT: molecular generation using a transformer-decoder model. J. Chem. Inf. Model. 62, 2064–2076 (2021).
Brown, N., Fiscato, M., Segler, M. H. S. & Vaucher, A. C. GuacaMol: benchmarking models for de novo molecular design. J. Chem. Inf. Model. 59, 1096–1108 (2019).
Polykovskiy, D. et al. Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol. 11, 565644 (2020).
Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).
Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Nat. Mach. Intell. 6, 161–169 (2024).
Born, J. & Manica, M. Regression Transformer enables concurrent sequence regression and generation for molecular language modelling. Nat. Mach. Intell. 5, 432–444 (2023).
Frey, N. C. et al. Neural scaling of deep chemical models. Nat. Mach. Intell. 5, 1297–1305 (2023).
Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Sci. Rep. 11, 321 (2021).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Stsiapanava, A. et al. Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH. Nat. Struct. Mol. Biol. 29, 190–193 (2022).
Liu, H. et al. Cryo-EM structures of human hepatitis B and woodchuck hepatitis virus small spherical subviral particles. Sci. Adv. 8, eabo4184 (2022).
Ren, F. et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chem. Sci. 14, 1443–1452 (2023).
Yang, Q. et al. Structural comparison and drug screening of spike proteins of ten SARS-CoV-2 variants. Research 2022, 9781758 (2022).
Yang, Q., Xia, D., Syed, A. A. S., Wang, Z. & Shi, Y. Highly accurate protein structure prediction and drug screen of monkeypox virus proteome. J. Infect. 86, 66–117 (2023).
Ivanenkov, Y. A. et al. Chemistry42: an AI-driven platform for molecular design and optimization. J. Chem. Inf. Model. 63, 695–701 (2023).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
Van Wart, H. E. & Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl Acad. Sci. USA 87, 5578–5582 (1990).
Michaud, J. M., Madani, A. & Fraser, J. S. A language model beats AlphaFold2 on orphans. Nat. Biotechnol. 40, 1576–1577 (2022).
Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).
Fang, X. et al. A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nat. Mach. Intell. 5, 1087–1096 (2023).
Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2014).
Corso, G., Stärk, H., Barzilay, R. & Jaakkola, T. DiffDock: diffusion steps, twists, and turns for molecular docking. Preprint at arxiv.org/abs/2210.01776 (2022).
Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).
Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).
Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).
Hughes, J. P., Rees, S. S., Kalindjian, S. B. & Philpott, K. L. Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249 (2011).
Goodnow, R. A. Hit and lead identification: integrated technology-based approaches. Drug Discov. Today Technol. 3, 367–375 (2006).
Yang, L. et al. Transformer-based deep learning method for optimizing ADMET properties of lead compounds. Phys. Chem. Chem. Phys. 25, 2377–2385 (2023).
Chen, Y., Yu, X., Li, W., Tang, Y. & Liu, G. In silico prediction of hERG blockers using machine learning and deep learning approaches. J. Appl. Toxicol. 43, 1462–1475 (2023).
Sharma, B. et al. Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Sci. Rep. 13, 4908 (2023).
Sun, D., Gao, W., Hu, H. & Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 12, 3049–3062 (2022).
Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).
Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1, 337–341 (2004).
Coutinho, A. L. et al. A robust, viable, and resource sparing HPLC-based log P method applied to common drugs. Int. J. Pharm. 644, 123325 (2023).
Faller, B. & Ertl, P. Computational approaches to determine drug solubility. Adv. Drug Deliv. Rev. 59, 533–545 (2007).
Aliagas, I., Gobbi, A., Lee, M. L. & Sellers, B. D. Comparison of log P and log D correction models trained with public and proprietary data sets. J. Comput. Aided Mol. Des. 36, 253–262 (2022).
Win, Z. M., Cheong, A. M. Y. & Hopkins, W. S. Using machine learning to predict partition coefficient (log P) and distribution coefficient (log D) with molecular descriptors and liquid chromatography retention time. J. Chem. Inf. Model. 63, 1906–1913 (2023).
Domingo-Almenara, X. et al. The METLIN small molecule dataset for machine learning-based retention time prediction. Nat. Commun. 10, 5811 (2019).
Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).
Datta, R., Das, D. & Das, S. Efficient lipophilicity prediction of molecules employing deep-learning models. Chemometr. Intell. Lab. Syst. 213, 104309 (2021).
Prasad, S. & Brooks, B. R. A deep learning approach for the blind log P prediction in SAMPL6 challenge. J. Comput. Aided Mol. Des. 34, 535–542 (2020).
Heijman, J., Voigt, N., Carlsson, L. G. & Dobrev, D. Cardiac safety assays. Curr. Opin. Pharmacol. 15, 16–21 (2014).
Ackloo, S. et al. CACHE (Critical Assessment of Computational Hit-finding Experiments): a public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding. Nat. Rev. Chem. 6, 287–295 (2022).
Swanson, K. et al. ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries. Zenodo https://doi.org/10.5281/zenodo.10372930 (2023).
Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).
Huang, R. et al. Tox21Challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2015.00085 (2016).
Tingle, B. I. et al. ZINC-22—a free multi-billion-scale database of tangible compounds for ligand discovery. J. Chem. Inf. Model. 63, 1166–1176 (2023).
Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).
Frye, L., Bhat, S., Akinsanya, K. & Abel, R. From computer-aided drug discovery to computer-driven drug discovery. Drug Discov. Today Technol. 39, 111–117 (2021).
Zeng, W., Guo, L., Xu, S., Chen, J. & Zhou, J. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 38, 888–906 (2020).
Sarkar, N. & Stokes, J. M. Practical applications of machine learning for anti-infective drug discovery. Med. Chem. Rev. 14, 345–375 (2023).
Arnold, A., Alexander, J., Liu, G. & Stokes, J. M. Applications of machine learning in microbial natural product drug discovery. Expert Opin. Drug Discov. 18, 1259–1272 (2023).
Mullowney, M. W. et al. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 22, 895–916 (2023).
Ekins, S. et al. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435–441 (2019).
Grisoni, F. et al. Designing anticancer peptides by constructive machine learning. ChemMedChem 13, 1300–1302 (2018).
Chen, J., Cheong, H. H. & Siu, S. W. I. xDeep-AcPEP: deep learning method for anticancer peptide activity prediction based on convolutional neural network and multitask learning. J. Chem. Inf. Model. 61, 3789–3803 (2021).
Walker, A. S. & Clardy, J. A machine learning bioinformatics method to predict biological activity from biosynthetic gene clusters. J. Chem. Inf. Model. 61, 2560–2571 (2021).
Heyndrickx, W. et al. MELLODDY: cross-pharma federated learning at unprecedented scale unlocks benefits in QSAR without compromising proprietary information. J. Chem. Inf. Model. 64, 2331–2344 (2023).
Wellawatte, G. P., Gandhi, H. A., Seshadri, A. & White, A. D. A perspective on explanations of molecular prediction models. J. Chem. Theory Comput. 19, 2149–2160 (2023).
Cichońska, A. et al. Crowdsourced mapping of unexplored target space of kinase inhibitors. Nat. Commun. 12, 3307 (2021).
Ketkar, N. in Deep Learning with Python 97–111 (Apress, 2017).
Acknowledgements
We thank G. Liu for his insightful comments during the preparation of the manuscript. This work was generously supported by the Weston Family Foundation, the Canadian Institutes of Health Research and the David Braley Centre for Antibiotic Discovery.
Author information
Authors and Affiliations
Contributions
D.B.C., J.A., A.A. and J.M.S. wrote and edited the paper.
Corresponding author
Ethics declarations
Competing interests
J.M.S. is a founder of Stoked Bio. All other authors declare no competing interests.
Peer review
Peer review information
Nature Chemical Biology thanks Cesar de la Fuente, Daniel Reker and the other, anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Catacutan, D.B., Alexander, J., Arnold, A. et al. Machine learning in preclinical drug discovery. Nat Chem Biol 20, 960–973 (2024). https://doi.org/10.1038/s41589-024-01679-1
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41589-024-01679-1
This article is cited by
-
Sorafenib nanomedicine in HCC: nano-bio interactions and combination therapies
Journal of Nanobiotechnology (2026)
-
Printing technologies for monitoring crop health
Nature Communications (2026)
-
Ligand-based machine learning models to classify active compounds for prostaglandin EP2 receptor
Scientific Reports (2026)
-
Machine learning-powered discovery of a novel berberine derivative inducing SCD-dependent ferroptosis in osteosarcoma
Journal of Translational Medicine (2025)
-
How evaluation choices distort the outcome of generative drug discovery
Journal of Cheminformatics (2025)


