Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mechanisms of metabolism-coupled protein modifications

Abstract

Intricate coupling between metabolism and protein post-translational modifications (PTMs) has emerged as a fundamental aspect of cellular regulation. Recent studies demonstrate that protein modifications can originate from diverse metabolites, and that their regulation is closely tied to the cellular metabolic state. Here we explore recently uncovered PTMs, including the concept of ‘modification of a modification’, as well as associated feedback and feedforward regulatory mechanisms, in which modified proteins impact not only related metabolic pathways but also other signaling cascades affecting physiology and diseases. The recently uncovered role of nucleus-localized metabolic enzymes for histone modifications additionally highlights the importance of cell-compartment-specific metabolic states. We further comment on the utility of untargeted metabolomics and proteomics for previously unrecognized PTMs and associated metabolic patterns. Together, these advances have uncovered a dynamic interplay between metabolism and PTMs, offering new perspectives for understanding metabolic regulation and developing targeted therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the mechanisms coupling protein modifications and metabolism.
Fig. 2: Biochemical diversity of metabolite-derived protein modifications.
Fig. 3: Metabolite sensing by reactive metabolite-derived non-enzymatic PTMs.
Fig. 4: Metabolic states interact with enzymatic protein modification dynamics.
Fig. 5: Untargeted metabolomics and proteomics reveal PTM signatures.

Similar content being viewed by others

Data availability

No data were generated for this manuscript.

References

  1. Keenan, E. K., Zachman, D. K. & Hirschey, M. D. Discovering the landscape of protein modifications. Mol. Cell 81, 1868–1878 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gyorgy, B., Toth, E., Tarcsa, E., Falus, A. & Buzas, E. I. Citrullination: a posttranslational modification in health and disease. Int. J. Biochem. Cell Biol. 38, 1662–1677 (2006).

    Article  PubMed  Google Scholar 

  3. Shang, S., Liu, J. & Hua, F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct. Target Ther. 7, 396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, Z. et al. Identification of lysine isobutyrylation as a new histone modification mark. Nucleic Acids Res. 49, 177–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Gao, Y. et al. Identification of histone lysine acetoacetylation as a dynamic post-translational modification regulated by HBO1. Adv. Sci. 10, e2300032 (2023).

    Article  Google Scholar 

  7. Liu, D. et al. Discovery of itaconate-mediated lysine acylation. J. Am. Chem. Soc. 145, 12673–12681 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Delaney, K. et al. Histone lysine methacrylation is a dynamic post-translational modification regulated by HAT1 and SIRT2. Cell Discov. 7, 122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, H. et al. Lysine benzoylation is a histone mark regulated by SIRT2. Nat. Commun. 9, 3374 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jiang, Y. H. et al. Isonicotinylation is a histone mark induced by the anti-tuberculosis first-line drug isoniazid. Nat. Commun. 12, 5548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moellering, R. E. & Cravatt, B. F. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341, 549–553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, S. H. et al. Amino acids downregulate SIRT4 to detoxify ammonia through the urea cycle. Nat. Metab. 5, 626–641 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Keenan, E. K., Bareja, A., Lam, Y., Grimsrud, P. A. & Hirschey, M. D. Cysteine S-acetylation is a post-translational modification involved in metabolic regulation. Preprint at bioRxiv https://doi.org/10.1101/2024.05.21.595030 (2024).

  14. Zheng, Q. et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat. Commun. 10, 1289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang, H. & Forman, H. J. Signaling by 4-hydroxy-2-nonenal: exposure protocols, target selectivity and degradation. Arch. Biochem. Biophys. 617, 145–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Hu, S. H. et al. Methylene-bridge tryptophan fatty acylation regulates PI3K-AKT signaling and glucose uptake. Cell Rep 38, 110509 (2022). This paper describes a chemically unusual PTM that is derived from polyunsaturated fatty acids. The modification was shown to occur at important kinases PDK1 and AKT2, regulating cell signaling.

  17. Linthwaite, V. L. et al. Ubiquitin is a carbon dioxide-binding protein. Sci. Adv. 7, eabi5507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pham, V. N. et al. Formaldehyde regulates S-adenosylmethionine biosynthesis and one-carbon metabolism. Science 382, eabp9201 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seim, G. L. et al. Nitric oxide-driven modifications of lipoic arm inhibit alpha-ketoacid dehydrogenases. Nat. Chem. Biol. 19, 265–274 (2023). This study shows that the production of reactive nitrogen species and cellular metabolic changes are linked via covalent modification of a metabolic enzyme-attached lipoyl group, as a representative example of modification-of-a-modification.

  20. Arp, N. L., Seim, G. L., Votava, J. A., Josephson, J. & Fan, J. Reactive nitrogen species inhibit branched chain α-ketoacid dehydrogenase complex and impact muscle cell metabolism. J. Biol. Chem. 299, 105333 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Minogue, E. et al. Glutarate regulates T cell metabolism and anti-tumour immunity. Nat. Metab. 5, 1747–1764 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu-Culligan, W. J. et al. Acetyl-methyllysine marks chromatin at active transcription start sites. Nature 622, 173–179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, B. B. et al. Post-crotonylation oxidation by a monooxygenase promotes acetyl-CoA synthetase degradation in Streptomyces roseosporus. Commun. Biol. 6, 1243 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carrico, C., Meyer, J. G., He, W., Gibson, B. W. & Verdin, E. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab. 27, 497–512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, W. H. et al. OXCT1 functions as a succinyltransferase, contributing to hepatocellular carcinoma via succinylating LACTB. Mol. Cell 84, 538–551 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Wagner, G. R. et al. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25, 823–837.e828 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simic, Z., Weiwad, M., Schierhorn, A., Steegborn, C. & Schutkowski, M. The ɛ-amino group of protein lysine residues is highly susceptible to nonenzymatic acylation by several physiological acyl-CoA thioesters. ChemBioChem 16, 2337–2347 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Kulkarni, R. A. et al. Discovering targets of non-enzymatic acylation by thioester reactivity profiling. Cell Chem. Biol. 24, 231–242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhatt, D. P. et al. Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice. J. Biol. Chem. 298, 101723 (2022). This study provides insight into specific acylation in an acyl-CoA-binding protein. It also demonstrates coupling between protein glutarylation and metabolism of the free amino acid lysine.

  30. Lu, X. et al. OGDH mediates the inhibition of SIRT5 on cell proliferation and migration of gastric cancer. Exp. Cell. Res. 382, 111483 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Cao, H. Y. et al. Malonylation of acetyl-CoA carboxylase 1 promotes hepatic steatosis and is attenuated by ketogenic diet in NAFLD. Cell Rep 42, 112319 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Carrico, C. et al. Coenzyme A binding sites induce proximal acylation across protein families. Sci. Rep. 13, 5029 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sjoblom, N. M., Kelsey, M. M. G. & Scheck, R. A. A systematic study of selective protein glycation. Angew. Chem. Int. Ed. 57, 16077–16082 (2018).

    Article  CAS  Google Scholar 

  34. Tzeng, S. C. & Maier, C. S. Label-free proteomics assisted by affinity enrichment for elucidating the chemical reactivity of the liver mitochondrial proteome toward adduction by the lipid electrophile 4-hydroxy-2-nonenal (HNE). Front. Chem. 4, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. McEwen, J. M., Fraser, S., Guir, A. L. S., Dave, J. & Scheck, R. A. Synergistic sequence contributions bias glycation outcomes. Nat. Commun. 12, 3316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Szapacs, M. E., Riggins, J. N., Zimmerman, L. J. & Liebler, D. C. Covalent adduction of human serum albumin by 4-hydroxy-2-nonenal: kinetic analysis of competing alkylation reactions. Biochemistry 45, 10521–10528 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Pedley, A. M., Pareek, V. & Benkovic, S. J. The purinosome: a case study for a mammalian metabolon. Annu. Rev. Biochem. 91, 89–106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martell, E. et al. Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat. Commun. 14, 2502 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, K. C. et al. Disrupted propionate metabolism evokes transcriptional changes in the heart by increasing histone acetylation and propionylation. Nat. Cardiovasc. Res. 2, 1221–1245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lagerwaard, B. et al. Increased protein propionylation contributes to mitochondrial dysfunction in liver cells and fibroblasts, but not in myotubes. J. Inherit. Metab. Dis. 44, 438–449 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Head, P. E. et al. Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin. Sci. Transl. Med. 14, eabn4772 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, B. et al. Acylspermidines are conserved mitochondrial sirtuin-dependent metabolites. Nat. Chem. Biol. 20, 812–822 (2024). This paper describes a family of metabolites that are downstream of protein lysine deacylation activity by mitochondrial sirtuins, demonstrating how untargeted metabolomics can reveal the substrate of an eraser enzyme.

  43. Palmieri, E. M. et al. Pyruvate dehydrogenase operates as an intramolecular nitroxyl generator during macrophage metabolic reprogramming. Nat. Commun. 14, 5114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hibbs, J. B. Jr., Taintor, R. R., Vavrin, Z. & Rachlin, E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87–94 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, X. et al. Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation. Cell Rep. 37, 109821 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Aboushousha, R. et al. Glutaredoxin attenuates glutathione levels via deglutathionylation of Otub1 and subsequent destabilization of system xC. Sci. Adv. 9, eadi5192 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yi, W. et al. Protein S-nitrosylation regulates proteostasis and viability of hematopoietic stem cell during regeneration. Cell Rep. 34, 108922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Francois, C. M., Pihl, T., Dunoyer de Segonzac, M., Herault, C. & Hudry, B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat. Commun. 14, 6737 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Varland, S. et al. N-terminal acetylation levels are maintained during acetyl-CoA deficiency in Saccharomyces cerevisiae. Mol. Cell Proteom. 17, 2309–2323 (2018).

    Article  CAS  Google Scholar 

  50. Bishop, T. R. et al. Acetyl-CoA biosynthesis drives resistance to histone acetyltransferase inhibition. Nat. Chem. Biol. 19, 1215–1222 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34, 634–648.e636 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Talwadekar, M. et al. Metabolic transitions regulate global protein fatty acylation. J. Biol. Chem. 300, 105563 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Nuskova, H. et al. Stearic acid blunts growth-factor signaling via oleoylation of GNAI proteins. Nat. Commun. 12, 4590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, B. et al. Amino acid and protein specificity of protein fatty acylation in C. elegans. Proc. Natl Acad. Sci. USA 121, e2307515121 (2024). This study demonstrates that Lys, Ser and Cys residues are preferentially modified with fatty acyls derived from distinct branches of lipid metabolism.

  55. Yu, Y. et al. An untargeted approach for revealing electrophilic metabolites. ACS Chem. Biol. 15, 3030–3037 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang, H. Y., Cui, M. X. & Han, M. Fatty acids impact sarcomere integrity through myristoylation and ER homeostasis. Cell Rep 36, 109539 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kallemeijn, W. W. et al. Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation. Nat. Protoc. 16, 5083–5122 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, Y. et al. MAVS Cys508 palmitoylation promotes its aggregation on the mitochondrial outer membrane and antiviral innate immunity. Proc. Natl Acad. Sci. USA 121, e2403392121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karthigeyan, K. P. et al. A bioorthogonal chemical reporter for fatty acid synthase-dependent protein acylation. J. Biol. Chem. 297, 101272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Puleston, D. J. et al. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184, 4186–4202.e4120 (2021). This paper identifies the coupling between polyamine synthesis and eIF5A hypusination when CD4+ T cells differentiate, which is required for T helper cell lineage fidelity.

  61. Zhou, J. et al. Spermidine-mediated hypusination of translation factor EIF5A improves mitochondrial fatty acid oxidation and prevents non-alcoholic steatohepatitis progression. Nat. Commun. 13, 5202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, H. et al. YAP/TAZ drives cell proliferation and tumour growth via a polyamine-eIF5A hypusination-LSD1 axis. Nat. Cell Biol. 24, 373–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi, U. Y. et al. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep. 40, 111234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mahalingam, S. S. et al. Polyamine metabolism impacts T cell dysfunction in the oral mucosa of people living with HIV. Nat. Commun. 14, 399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, R. C. et al. Brain glycogen serves as a critical glucosamine cache required for protein glycosylation. Cell Metab. 33, 1404–1417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, X. et al. Hexosamine biosynthetic pathway and O-GlcNAc-processing enzymes regulate daily rhythms in protein O-GlcNAcylation. Nat. Commun. 12, 4173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi, Q. et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell 40, 1207–1222 e1210 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Petrus, P. et al. Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab. 31, 375–390 e311 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, X., Cai, Y. D. & Chiu, J. C. Regulation of protein O-GlcNAcylation by circadian, metabolic and cellular signals. J. Biol. Chem. 300, 105616 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, X. et al. A GAPDH serotonylation system couples CD8+ T cell glycolytic metabolism to antitumor immunity. Mol. Cell 84, 760–775 e767 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Mordhorst, A. et al. Phenylalanine hydroxylase contributes to serotonin synthesis in mice. FASEB J. 35, e21648 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Yu, J. et al. Parallel pathways for serotonin biosynthesis and metabolism in C. elegans. Nat. Chem. Biol. 19, 141–150 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Li, H. et al. β-hydroxybutyrate reduces reinstatement of cocaine conditioned place preference through hippocampal CaMKII-α β-hydroxybutyrylation. Cell Rep. 41, 111724 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Lund, P. J. et al. Stable isotope tracing in vivo reveals a metabolic bridge linking the microbiota to host histone acetylation. Cell Rep. 41, 111809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, Q. et al. Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat. Commun. 13, 4291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. He, X. D. et al. Sensing and transmitting intracellular amino acid signals through reversible lysine aminoacylations. Cell Metab. 27, 151–166 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Zong, Z. et al. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell 187, 2375–2392 e2333 (2024). This paper shows that one of the ARSs can act as a lactyltransferase, which potentially effects a broad range of lactylation-regulated processes. Together with He et al. (2018), these findings provide notable examples of the coupling of tumor cell metabolism to protein modifications and demonstrate that the roles of ARSs as PTM writers extend beyond previously reported lysine amino acylation.

  78. Howie, J. et al. Glutathione-dependent depalmitoylation of phospholemman by peroxiredoxin 6. Cell Rep. 43, 113679 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Martin-Gallausiaux, C., Marinelli, L., Blottiere, H. M., Larraufie, P. & Lapaque, N. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80, 37–49 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Thomas, S. P. & Denu, J. M. Short-chain fatty acids activate acetyltransferase p300. eLife 10, e72171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nitsch, S., Zorro Shahidian, L. & Schneider, R. Histone acylations and chromatin dynamics: concepts, challenges and links to metabolism. EMBO Rep. 22, e52774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qin, F. et al. Linking chromatin acylation mark-defined proteome and genome in living cells. Cell 186, 1066–1085 e1036 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Diehl, K. L. & Muir, T. W. Chromatin as a key consumer in the metabolite economy. Nat. Chem. Biol. 16, 620–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Trefely, S., Lovell, C. D., Snyder, N. W. & Wellen, K. E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. 38, 100941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nagaraj, R. et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168, 210–223 e211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, W. et al. Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nat. Commun. 13, 7414 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bulusu, V. et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18, 647–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mendoza, M. et al. Enzymatic transfer of acetate on histones from lysine reservoir sites to lysine activating sites. Sci. Adv. 8, eabj5688 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Singh, S., Senapati, P. & Kundu, T. K. Metabolic regulation of lysine acetylation: implications in cancer. Subcell. Biochem. 100, 393–426 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Kafkia, E. et al. Operation of a TCA cycle subnetwork in the mammalian nucleus. Sci. Adv. 8, eabq5206 (2022). This paper describes the presence of a part of the TCA cycle in the nucleus and demonstrates its contribution to nuclear protein succinylation. The finding was based on metabolomic analysis of the nucleus.

  93. Liu, X. J. et al. The existence of a nonclassical TCA cycle in the nucleus that wires the metabolic-epigenetic circuitry. Signal Transduct. Target Ther 6, 375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, Y. et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature 552, 273–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yuan, H. R. et al. Lysine catabolism reprograms tumour immunity through histone crotonylation. Nature 617, 818–826 (2023). This paper describes the presence of a key lysine catabolism enzyme in the nucleus and shows that the product of the enzyme (that is, crotonyl-CoA) contributes to histone modification. This hypothesis was developed from the observation of lysine uptake changes in the glioblastoma stem cells revealed by metabolomics.

  96. Anmangandla, A., Ren, Y., Fu, Q., Zhang, S. & Lin, H. The acyl-CoA specificity of human lysine acetyltransferase KAT2A. Biochemistry 61, 1874–1882 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Russo, M. et al. Acetyl-CoA production by mediator-bound 2-ketoacid dehydrogenases boosts de novo histone acetylation and is regulated by nitric oxide. Mol. Cell 84, 967–980 e910 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zervopoulos, S. D. et al. MFN2-driven mitochondria-to-nucleus tethering allows a non-canonical nuclear entry pathway of the mitochondrial pyruvate dehydrogenase complex. Mol. Cell 82, 1066–1077 e1067 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Fransen, M., Lismont, C. & Walton, P. The peroxisome–mitochondria connection: how and why?. Int. J. Mol. Sci. 18, 1126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yang, Y. et al. Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer’s disease. Nat. Commun. 13, 159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, Z. W. et al. STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduct. Target Ther. 8, 391 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gut, P. et al. SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nat. Commun. 11, 5927 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, P. et al. High dietary fructose promotes hepatocellular carcinoma progression by enhancing O-GlcNAcylation via microbiota-derived acetate. Cell Metab. 35, 1961–1975 e1966 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Helf, M. J., Fox, B. W., Artyukhin, A. B., Zhang, Y. K. & Schroeder, F. C. Comparative metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway in C. elegans. Nat. Commun. 13, 782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bern, M., Kil, Y. J. & Becker, C. Byonic: advanced peptide and protein identification software. Curr. Protoc. Bioinformatics 13, 13.20.11–13.20.14 (2012).

    Google Scholar 

  107. Zhai, Y. et al. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 379, eabg2482 (2023). This study uses sequencing-based proteomics data analysis algorithms to look for PTM changes in an untargeted manner (that is, the searching is not limited to a short list of known PTMs, as in conventional workflows).

  108. Geiszler, D. J., Polasky, D. A., Yu, F. & Nesvizhskii, A. I. Detecting diagnostic features in MS/MS spectra of post-translationally modified peptides. Nat. Commun. 14, 4132 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gao, J. et al. Identification of 113 new histone marks by CHiMA, a tailored database search strategy. Sci. Adv. 9, eadf1416 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Prus, G., Hoegl, A., Weinert, B. T. & Choudhary, C. Analysis and interpretation of protein post-translational modification site stoichiometry. Trends Biochem. Sci. 44, 943–960 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, R. et al. Regulation of urea cycle by reversible high-stoichiometry lysine succinylation. Nat. Metab. 6, 550–566 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Trefely, S. et al. Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol. Cell 82, 447–462 e446 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. James, A. M., Smith, A. C., Smith, C. L., Robinson, A. J. & Murphy, M. P. Proximal cysteines that enhance lysine acetylation of cytosolic proteins in mice are less conserved in longer-living species. Cell Rep. 24, 1445–1455 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. N. Garner for comments and proofreading the manuscript. This work was supported, in part, by the National Institutes of Health (R35GM131877).

Author information

Authors and Affiliations

Authors

Contributions

B.Z. conceived the idea and outline for this Perspective. B.Z. and F.C.S. wrote the text and prepared figures.

Corresponding author

Correspondence to Frank C. Schroeder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Shi-Min Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Schroeder, F.C. Mechanisms of metabolism-coupled protein modifications. Nat Chem Biol 21, 819–830 (2025). https://doi.org/10.1038/s41589-024-01805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-024-01805-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research