Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Degrons and degradation signals beyond short linear motifs

Abstract

Ubiquitin-dependent protein degradation regulates myriad fundamental cellular processes. At its core are degradation signals, or degrons, that initiate substrate engagement and ubiquitination by E3 ubiquitin ligases. Here we highlight how a variety of degradation signals promote substrate–E3 ligase interactions to orchestrate protein turnover with precision. While short linear motifs are frequently identified as degrons, an increasing number of degrons have recently been mapped to high-order protein structures, underscoring the architectural diversity and cryptic nature of degradation signals. Furthermore, nonproteinaceous signals beyond degrons often facilitate the precise control of protein ubiquitination. These additional signals can reside within substrates and E3 ligases or at their interfaces. Finally, we discuss how dysregulation of degrons and degradation signals is linked to human diseases. A deeper mechanistic understanding of degradation signals will guide new therapeutic strategies, whether by restoring defective protein ubiquitination or by harnessing targeted protein degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recognition of substrate SLiM degrons by E3 ligases.
Fig. 2: Recognition of substrate tertiary and quaternary structure degrons by E3 ligases.
Fig. 3: Diverse degradation signals regulating substrate recognition and ubiquitination by E3 ligases.
Fig. 4: Dysregulation of substrate–E3 interactions in human diseases.
Fig. 5: Synthetic molecules regulating substrate recognition and ubiquitination by E3 ligases.

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Müller, L. & Hoppe, T. UPS-dependent strategies of protein quality control degradation. Trends Biochem. Sci. 49, 859–874 (2024).

    Article  PubMed  Google Scholar 

  3. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Cowan, A. D. & Ciulli, A. Driving E3 ligase substrate specificity for targeted protein degradation: lessons from nature and the laboratory. Annu. Rev. Biochem. 91, 295–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin–proteasome system. Nat. Rev. Mol. Cell Biol. 9, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Varshavsky, A. Naming a targeting signal. Cell 64, 13–15 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Okoye, C. N., Rowling, P. J. E., Itzhaki, L. S. & Lindon, C. Counting degrons: lessons from multivalent substrates for targeted protein degradation. Front. Physiol. 13, 913063 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harris, T. J. & Trader, D. J. Exploration of degrons and their ability to mediate targeted protein degradation. RSC Med. Chem. https://doi.org/10.1039/d4md00787e (2025).

    Article  PubMed  Google Scholar 

  11. Varshavsky, A. N-degron pathways. Proc. Natl Acad. Sci. USA 121, e2408697121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sherpa, D., Chrustowicz, J. & Schulman, B. A. How the ends signal the end: regulation by E3 ubiquitin ligases recognizing protein termini. Mol. Cell 82, 1424–1438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Z., Mena, E. L., Timms, R. T., Koren, I. & Elledge, S. J. Degrons: defining the rules of protein degradation. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-025-00870-z (2025).

    Article  PubMed  Google Scholar 

  15. Padovani, C., Jevtić, P. & Rapé, M. Quality control of protein complex composition. Mol. Cell 82, 1439–1450 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Rogers, S., Wells, R. & Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364–368 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Skaar, J. R., Pagan, J. K. & Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 14, 369–381 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Latres, E., Chiaur, D. S. & Pagano, M. The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, G. et al. Structure of a β-TrCP1–Skp1–β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, T. Y. et al. Substrate trapping proteomics reveals targets of the βTrCP2/FBXW11 ubiquitin ligase. Mol. Cell. Biol. 35, 167–181 (2015).

    Article  PubMed  Google Scholar 

  22. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J. M. et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol. Cell 48, 572–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Taguchi, K. & Yamamoto, M. The KEAP1–NRF2 system in cancer. Front. Oncol. 7, 85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lo, S. C., Li, X., Henzl, M. T., Beamer, L. J. & Hannink, M. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 25, 3605–3617 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koren, I. et al. The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173, 1622–1635 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, H. C. et al. C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol. Cell 70, 602–613 (2018). This reference and Koren et al. (2018) are the first studies to systematically investigate protein and peptide stability at scale,revealing that the extreme C termini of proteins can serve as necessary and sufficient degrons to trigger protein degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Piatkov, K. I., Colnaghi, L., Békés, M., Varshavsky, A. & Huang, T. T. The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway. Mol. Cell 48, 926–933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ichikawa, S. et al. The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Nature 610, 775–782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muhar, M. F. et al. C-terminal amides mark proteins for degradation via SCF–FBXO31. Nature 638, 519–527 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Z. et al. Elucidation of E3 ubiquitin ligase specificity through proteome-wide internal degron mapping. Mol. Cell 83, 3377–3392 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, M. et al. Molecular insights into degron recognition by CRL5. Nat. Commun. 15, 6177 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang, X. et al. A C-terminal glutamine recognition mechanism revealed by E3 ligase TRIM7 structures. Nat. Chem. Biol. 18, 1214–1223 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Luptak, J. et al. TRIM7 restricts coxsackievirus and norovirus infection by detecting the C-terminal glutamine generated by 3C protease processing. Viruses 14, 1610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ru, Y. et al. C-terminal glutamine acts as a C-degron targeted by E3 ubiquitin ligase TRIM7. Proc. Natl Acad. Sci. USA 119, e2203218119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, S. W. et al. Structural basis for substrate recognition and chemical inhibition of oncogenic MAGE ubiquitin ligases. Nat. Commun. 11, 4931 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grabarczyk, D. B. et al. Architecture of the UBR4 complex, a giant E4 ligase central to eukaryotic protein quality control. Science 389, 909–914 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haakonsen, D. L. et al. Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature 626, 874–880 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santelli, E. et al. Structural analysis of Siah1–Siah-interacting protein interactions and insights into the assembly of an E3 ligase multiprotein complex. J. Biol. Chem. 280, 34278–34287 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Zeng, Z. et al. Structural basis of selective ubiquitination of TRF1 by SCFFbx4. Dev. Cell 18, 214–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xing, W. et al. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64–68 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu, Y. et al. Dynamic molecular architecture and substrate recruitment of cullin3–RING E3 ligase CRL3. Nat. Struct. Mol. Biol. 31, 336–350 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang, W., Wang, W., Kong, Y. & Zheng, S. Structural basis for the ubiquitination of G protein βγ subunits by KCTD5/cullin3 E3 ligase. Sci. Adv. 9, eadg8369 (2023). This study reveals how a globular subunit of G proteins is recognized by a CRL3 substrate receptor to modulate and attenuate GPCR signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nguyen, D. M. et al. Structure and dynamics of a pentameric KCTD5/CUL3/Gβγ E3 ubiquitin ligase complex. Proc. Natl Acad. Sci. USA 121, e2315018121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, P. et al. The CRL5–SPSB3 ubiquitin ligase targets nuclear cGAS for degradation. Nature 627, 873–879 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Filippakopoulos, P. et al. Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4. J. Mol. Biol. 401, 389–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao, S. et al. Recognition of BACH1 quaternary structure degrons by two F-box proteins under oxidative stress. Cell 187, 7568–7584 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Goretzki, B. et al. Dual BACH1 regulation by complementary SCF-type E3 ligases. Cell 187, 7585–7602 (2024). This reference and Cao et al. (2024) provide mechanistic insights into how E3 ligases detect not only quaternary structure degrons but also the strength of interaction between protomers as a signal for protein degradation.

    Article  CAS  PubMed  Google Scholar 

  50. Lumpkin, R. J., Baker, R. W., Leschziner, A. E. & Komives, E. A. Structure and dynamics of the ASB9 CUL–RING E3 ligase. Nat. Commun. 11, 2866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Teng, F. et al. Cryo-EM structure of the KLHL22 E3 ligase bound to an oligomeric metabolic enzyme. Structure 31, 1431–1440 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Gottemukkala, K. V. et al. Non-canonical substrate recognition by the human WDR26–CTLH E3 ligase regulates prodrug metabolism. Mol. Cell 84, 1948–1963 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sherpa, D. et al. GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Mol. Cell 81, 2445–2459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jenkyn-Bedford, M. et al. A conserved mechanism for regulating replisome disassembly in eukaryotes. Nature 600, 743–747 (2021). This report reveals how E3 ligases selectively ubiquitinate and disassemble the replisome complex only after the termination of DNA replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grothusen, G. P. et al. DCAF15 control of cohesin dynamics sustains acute myeloid leukemia. Nat. Commun. 15, 5604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Welcker, M. et al. Two diphosphorylated degrons control c-Myc degradation by the Fbw7 tumor suppressor. Sci. Adv. 8, eabl7872 (2022). This study demonstrates how two double-phosphorylated degrons in an important oncogene product are simultaneously engaged by a dimeric E3 ligase to initiate protein degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, S., Tischer, T. & Barford, D. Cyclin A2 degradation during the spindle assembly checkpoint requires multiple binding modes to the APC/C. Nat. Commun. 10, 3863 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kuchay, S. et al. FBXL2- and PTPL1-mediated degradation of p110-free p85β regulatory subunit controls the PI3K signalling cascade. Nat. Cell Biol. 15, 472–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Y. et al. Structural basis for the regulatory role of the PPxY motifs in the thioredoxin-interacting protein TXNIP. Biochem. J. 473, 179–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Rusnac, D. V. et al. Recognition of the diglycine C-end degron by CRL2KLHDC2 ubiquitin ligase. Mol. Cell 72, 813–822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Düring, J. et al. Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1. Nat. Struct. Mol. Biol. 31, 364–377 (2024). This study provides the structural basis for how ligand-induced conformational changes are recognized by E3 ligases and how the autoinhibited state of a HECT E3 ligase is maintained.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tsai, J. M. et al. UBR5 forms ligand-dependent complexes on chromatin to regulate nuclear hormone receptor stability. Mol. Cell 83, 2753–2767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mark, K. G. et al. Orphan quality control shapes network dynamics and gene expression. Cell 186, 3460–3475 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Zeng, J. et al. Target-induced clustering activates Trim-Away of pathogens and proteins. Nat. Struct. Mol. Biol. 28, 278–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benn, J. et al. Aggregate-selective removal of pathological tau by clustering-activated degraders. Science 385, 1009–1016 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miller, L. V. C. et al. Co-opting templated aggregation to degrade pathogenic tau assemblies and improve motor function. Cell 187, 5967–5980 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kokic, G., Wagner, F. R., Chernev, A., Urlaub, H. & Cramer, P. Structural basis of human transcription–DNA repair coupling. Nature 598, 368–372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matsuo, Y. et al. Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat. Commun. 8, 159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Grabarczyk, D. B. et al. HUWE1 employs a giant substrate-binding ring to feed and regulate its HECT E3 domain. Nat. Chem. Biol. 17, 1084–1092 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hunkeler, M. et al. Solenoid architecture of HUWE1 contributes to ligase activity and substrate recognition. Mol. Cell 81, 3468–3480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meek, D. W. & Knippschild, U. Posttranslational modification of MDM2. Mol. Cancer Res. 1, 1017–1026 (2003).

    CAS  PubMed  Google Scholar 

  72. Dou, H. et al. Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat. Struct. Mol. Biol. 19, 184–192 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Gladkova, C., Maslen, S. L., Skehel, J. M. & Komander, D. Mechanism of parkin activation by PINK1. Nature 559, 410–414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DaRosa, P. A. et al. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517, 223–226 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Kuchay, S. et al. GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase. Nat. Struct. Mol. Biol. 26, 628–636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhat, S.A. et al. Geranylgeranylated SCFFBXO10 regulates selective outer mitochondrial membrane proteostasis and function. Cell Rep. 43, 114783 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, H. et al. FBXL5 regulates IRP2 stability in iron homeostasis via an oxygen-responsive [2Fe2S] cluster. Mol. Cell 78, 31–41 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahel, J. et al. Moyamoya disease factor RNF213 is a giant E3 ligase with a dynein-like core and a distinct ubiquitin-transfer mechanism. eLife 9, e56185 (2020). This study reveals a unique large E3 ligase containing an unusual dynein-like core with ATPase activity.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Crespillo-Casado, A. et al. Recognition of phylogenetically diverse pathogens through enzymatically amplified recruitment of RNF213. EMBO Rep. 25, 4979–5005 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ito, S., Song, Y. H. & Imaizumi, T. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5, 573–582 (2012).

    Article  PubMed  Google Scholar 

  81. Kwon, E. et al. Structural analysis of the regulation of blue-light receptors by GIGANTEA. Cell Rep. 39, 110700 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Alfieri, C. et al. Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature 536, 431–436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Manford, A. G. et al. Structural basis and regulation of the reductive stress response. Cell 184, 5375–5390 (2021). This study demonstrates that zinc ions act as molecular glues at the substrate–E3 interface, facilitating substrate degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scott, D. C. et al. E3 ligase autoinhibition by C-degron mimicry maintains C-degron substrate fidelity. Mol. Cell 83, 770–786 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Ehrmann, J. F. et al. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science 379, 1117–1123 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Hunkeler, M., Jin, C. Y. & Fischer, E. S. Structures of BIRC6–client complexes provide a mechanism of SMAC-mediated release of caspases. Science 379, 1105–1111 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, S. S. et al. Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy. Nat. Commun. 15, 891 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peschard, P. et al. Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b. Mol. Cell 27, 474–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Kozlov, G. et al. Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase. J. Biol. Chem. 282, 27547–27555 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, X. et al. Mechanism of Ψ-Pro/C-degron recognition by the CRL2. Nat. Commun. 15, 3558 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Duda, D. M. et al. Structure of HHARI, a RING–IBR–RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21, 1030–1041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kostrhon, S. et al. CUL5–ARIH2 E3–E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. Nat. Chem. Biol. 17, 1075–1083 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Scott, D. C. et al. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166, 1198–1214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McMinimy, R. et al. Reactive oxygen species control protein degradation at the mitochondrial import gate. Mol. Cell 84, 4612–4628 (2024).

    Article  CAS  PubMed  Google Scholar 

  98. Varshney, N. et al. A review of von Hippel–Lindau syndrome. J. Kidney Cancer VHL 4, 20–29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Fischer, E. S. et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147, 1024–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Johnson-Kerner, B. L., Roth, L., Greene, J. P., Wichterle, H. & Sproule, D. M. Giant axonal neuropathy: an updated perspective on its pathology and pathogenesis. Muscle Nerve 50, 467–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Ge, Z. et al. Integrated genomic analysis of the ubiquitin pathway across cancer types. Cell Rep. 23, 213–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8, 83–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Cuneo, M. J., O’Flynn, B. G., Lo, Y. H., Sabri, N. & Mittag, T. Higher-order SPOP assembly reveals a basis for cancer mutant dysregulation. Mol. Cell 83, 731–745 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cerami, E. et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  105. Schumacher, F. R., Sorrell, F. J., Alessi, D. R., Bullock, A. N. & Kurz, T. Structural and biochemical characterization of the KLHL3–WNK kinase interaction important in blood pressure regulation. Biochem. J. 460, 237–246 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Boyden, L. M. et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482, 98–102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tokheim, C. et al. Systematic characterization of mutations altering protein degradation in human cancers. Mol. Cell 81, 1292–1308 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin, Z. et al. Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nat. Genet. 48, 1508–1516 (2016).

    Article  PubMed  Google Scholar 

  109. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, Z. et al. Disease-associated KBTBD4 mutations in medulloblastoma elicit neomorphic ubiquitylation activity to promote CoREST degradation. Cell Death Differ. 29, 1955–1969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xie, X. et al. Converging mechanism of UM171 and KBTBD4 neomorphic cancer mutations. Nature 639, 241–249 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, Z. et al. Structural mimicry of UM171 and neomorphic cancer mutants co-opts E3 ligase KBTBD4 for HDAC1/2 recruitment. Nat. Commun. 16, 3144 (2025). This reference, Xie et al. (2025) and Yeo (2025) demonstrate how cancer associated mutations in an E3 ligase mimic the mechanism of action of a small molecule to induce the degradation of neosubstrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mercuri, E., Sumner, C. J., Muntoni, F., Darras, B. T. & Finkel, R. S. Spinal muscular atrophy. Nat. Rev. Dis. Primers 8, 52 (2022).

    Article  PubMed  Google Scholar 

  114. Cho, S. & Dreyfuss, G. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. 24, 438–442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Oleinikovas, V., Gainza, P., Ryckmans, T., Fasching, B. & Thomä, N. H. From thalidomide to rational molecular glue design for targeted protein degradation. Annu. Rev. Pharmacol. Toxicol. 64, 291–312 (2023).

    Article  PubMed  Google Scholar 

  116. Yoon, H., Rutter, J. C., Li, Y. D. & Ebert, B. L. Induced protein degradation for therapeutics: past, present, and future. J. Clin. Invest. 134, e175265 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Konstantinidou, M. & Arkin, M. R. Molecular glues for protein–protein interactions: progressing toward a new dream. Cell Chem. Biol. 31, 1064–1088 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, B., Cao, S. & Zheng, N. Emerging strategies for prospective discovery of molecular glue degraders. Curr. Opin. Struct. Biol. 86, 102811 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lu, P. et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 187, 7126–7142 (2024). The authors of this study discovered a novel MGD that targets the nuclear pore complex and designed PROTAC molecules that selectively target multimeric proteins.

    Article  CAS  PubMed  Google Scholar 

  121. Zhuang, Z. et al. Charged molecular glue discovery enabled by targeted degron display. Preprint at bioRxiv https://doi.org/10.1101/2024.09.24.614843 (2024).

  122. Yeo, M. J. R. UM171 glues asymmetric CRL3–HDAC1/2 assembly to degrade CoREST corepressors. Nature 639, 232–240 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hanzl, A. et al. Primed for degradation: how weak protein interactions enable molecular glue degraders. Curr. Opin. Struct. Biol. 92, 103052 (2025).

    Article  CAS  PubMed  Google Scholar 

  124. Simonetta, K. R. et al. Prospective discovery of small molecule enhancers of an E3 ligase–substrate interaction. Nat. Commun. 10, 1402 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Petzold, G., Fischer, E. S. & Thomä, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature 532, 127–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535, 252–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Wing, C. E. et al. Allosteric degraders induce CRL5ASB8 mediated degradation of XPO1. Preprint at bioRxiv https://doi.org/10.1101/2024.10.07.617049 (2024).

  128. Song, K. W. et al. RTK-dependent inducible degradation of mutant PI3Kα drives GDC-0077 (inavolisib) efficacy. Cancer Discov. 12, 204–219 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Ferretti, S. et al. Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers. Nature 629, 443–449 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hennes, E. et al. Monovalent pseudo-natural product degraders supercharge the native degradation of IDO1 by KLHDC3. Preprint at bioRxiv https://doi.org/10.1101/2024.07.10.602857 (2024).

  131. Boike, L. et al. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 28, 4–13 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Gowans, F. A. Covalent degrader of the oncogenic transcription factor β-catenin. J. Am. Chem. Soc. 146, 16856–16865 (2024).

    Article  CAS  Google Scholar 

  133. Roy, N. et al. Suppression of NRF2-dependent cancer growth by a covalent allosteric molecular glue. Preprint at bioRxiv https://doi.org/10.1101/2024.10.04.616592 (2024).

  134. Sauvé, V. et al. Activation of parkin by a molecular glue. Nat. Commun. 15, 7707 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wang, W. et al. MDM2 inhibitors for cancer therapy: the past, present, and future. Pharm. Rev. 76, 414–453 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Crisman, E. et al. KEAP1–NRF2 protein–protein interaction inhibitors: design, pharmacological properties and therapeutic potential. Med. Res. Rev. 43, 237–287 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Kimani, S. W. et al. The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition. Commun. Biol. 6, 1272 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Collins, G. P. et al. A first-in-human phase 1 trial of NX-1607, a first-in-class oral CBL-B inhibitor, in patients with advanced malignancies including DLBCL. Blood 142, 3093 (2023).

    Article  Google Scholar 

  139. Rothman, A. M. K. et al. Therapeutic potential of allosteric HECT E3 ligase inhibition. Cell 188, 2603–2620 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Timms, R. T. et al. A glycine-specific N-degron pathway mediates the quality control of protein. Science 365, eaaw4912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhou, G. et al. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat. Commun. 15, 7761 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cao, S. et al. Defining molecular glues with a dual-nanobody cannabidiol sensor. Nat. Commun. 13, 815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Petzold, G. et al. Mining the CRBN target space redefines rules for molecular glue-induced neosubstrate recognition. Science 389, eadt6736 (2025).

    Article  CAS  PubMed  Google Scholar 

  145. Harper, J. W. & Schulman, B. A. Cullin–RING ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis. Annu. Rev. Biochem. 90, 403–429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hopf, L. V. M. et al. Structure of CRL7FBXW8 reveals coupling with CUL1–RBX1/ROC1 for multi-cullin–RING E3-catalyzed ubiquitin ligation. Nat. Struct. Mol. Biol. 29, 854–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Horn-Ghetko, D. et al. Noncanonical assembly, neddylation and chimeric cullin–RING/RBR ubiquitylation by the 1.8 MDa CUL9 E3 ligase complex. Nat. Struct. Mol. Biol. 31, 1083–1094 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Barford, D. Structural interconversions of the anaphase-promoting complex/cyclosome (APC/C) regulate cell cycle transitions. Curr. Opin. Struct. Biol. 61, 86–97 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Qiao, S. et al. Interconversion between anticipatory and active GID E3 ubiquitin ligase conformations via metabolically driven substrate receptor assembly. Mol. Cell 77, 150–163 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.W. and N.Z. are supported by the Howard Hughes Medical Institute, the Washington Research Foundation and funds from the US National Institutes of Health (R01 HD097408, R01 DA056370 and R01HL112808). N.Z. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

B.W. and N.Z. conceived the central themes of the Review. B.W. wrote the initial draft. N.Z. made the figures. B.W. and N.Z. completed the final preparation.

Corresponding authors

Correspondence to Baiyun Wang or Ning Zheng.

Ethics declarations

Competing interests

N.Z. is one of the scientific cofounders and a shareholder of SEED Therapeutics, and serves as a member of the scientific advisory boards of SyntheX, Molecular Glue Labs, Cold Start Therapeutics and Differentiated Therapeutics, with financial interests. B.W. declares no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Chao Xu, Cheng Dong and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

References for Supplementary Table 1

Reporting Summary

Supplementary Table 1

Structurally characterized human E3–degron complexes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zheng, N. Degrons and degradation signals beyond short linear motifs. Nat Chem Biol (2025). https://doi.org/10.1038/s41589-025-02056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41589-025-02056-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing