Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immune response against flaviviruses

Abstract

Arthropod-borne flaviviruses are important human pathogens that cause a diverse range of clinical conditions, including severe hemorrhagic syndromes, neurological complications and congenital malformations. Consequently, there is an urgent need to develop safe and effective vaccines, a process requiring better understanding of the immunological mechanisms involved during infection. Decades of research suggest a paradoxical role of the immune response against flaviviruses: although the immune response is crucial for the control, clearance and prevention of infection, poor clinical outcomes are commonly associated with virus-specific immunity and immunopathogenesis. This relationship is further complicated by the high homology among viruses and the implication of cross-reactive immune responses in protection and pathogenesis. This Review examines the dual role of the adaptive immune response against flaviviruses, particularly emphasizing the most recent findings regarding cross-reactive T cell and antibody responses, and the effects that these concepts have on vaccine-development endeavors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flavivirus genomic organization and structure.
Fig. 2: Flavivirus life cycle.
Fig. 3: Structural heterogeneity of flavivirus particles during maturation.
Fig. 4: Complex quaternary epitopes on the viral surface.

Similar content being viewed by others

References

  1. Family - Flaviviridae. in Virus Taxonomy (eds. King, A.M.Q. et al.) 1003–1020 (Elsevier, San Diego, 2012).

  2. Culshaw, A., Mongkolsapaya, J. & Screaton, G. The immunology of Zika virus. F1000Res. 7, 203 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lindenbach, B.D., Heinz-Jurgen, T. & Rice, C.M. Flaviviridae: the viruses and their replication. in Fields’ Virology 5th edn. (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) (Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2007).

  5. Modis, Y. Relating structure to evolution in class II viral membrane fusion proteins. Curr. Opin. Virol. 5, 34–41 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sirohi, D. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352, 467–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perera, R. & Kuhn, R. J. Structural proteomics of dengue virus. Curr. Opin. Microbiol. 11, 369–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Plevka, P. et al. Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep. 12, 602–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cherrier, M. V. et al. Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J. 28, 3269–3276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dejnirattisai, W. et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328, 745–748 (2010). This paper shows that antibodies to prM are strong inducers of ADE and have poor neutralizing activity.

    Article  CAS  PubMed  Google Scholar 

  12. Dejnirattisai, W. et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16, 170–177 (2015). This paper describes human mAbs against the quaternary EDE epitopes and their ability to potently neutralize all four DENV serotypes.

    Article  CAS  PubMed  Google Scholar 

  13. Kuhn, R. J., Dowd, K. A., Beth Post, C. & Pierson, T. C. Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host. Virology 479-480, 508–517 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, X. et al. Dengue structure differs at the temperatures of its human and mosquito hosts. Proc. Natl. Acad. Sci. USA 110, 6795–6799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rey, F. A., Stiasny, K., Vaney, M. C., Dellarole, M. & Heinz, F. X. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep. 19, 206–224 (2018). This review describes in detail the structural properties of the flavivirus particle, their interaction with the humoral response and the mechanisms involved in antibody-mediated neutralization.

    Article  CAS  PubMed  Google Scholar 

  16. Duangchinda, T. et al. Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proc. Natl. Acad. Sci. USA 107, 16922–16927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rivino, L. et al. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J. Virol. 87, 2693–2706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiskopf, D. et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J. Virol. 89, 120–128 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Grifoni, A. et al. Global assessment of dengue virus-specific CD4+ T cell responses in dengue-endemic areas. Front. Immunol. 8, 1309 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Turtle, L. et al. Human T cell responses to Japanese encephalitis virus in health and disease. J. Exp. Med. 213, 1331–1352 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. James, E. A. et al. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins. J. Virol. 87, 12794–12804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akondy, R. S. et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J. Immunol. 183, 7919–7930 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Grifoni, A. et al. Prior Dengue virus exposure shapes T cell immunity to Zika virus in humans. J. Virol. https://doi.org/10.1128/JVI.01469-17 (2017).

  24. Ricciardi, M. J. et al. Ontogeny of the B- and T-cell response in a primary Zika virus infection of a dengue-naïve individual during the 2016 outbreak in Miami, FL. PLoS Negl. Trop. Dis. 11, e0006000 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Reynolds, C. J. et al. T cell immunity to Zika virus targets immunodominant epitopes that show cross-reactivity with other Flaviviruses. Sci. Rep. 8, 672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elong Ngono, A. et al. Mapping and role of the CD8+ T cell response during primary Zika virus infection in mice. Cell Host Microbe 21, 35–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Shrestha, B., Samuel, M. A. & Diamond, M. S. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J. Virol. 80, 119–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shrestha, B., Pinto, A. K., Green, S., Bosch, I. & Diamond, M. S. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J. Virol. 86, 8937–8948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jain, N. et al. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function. PLoS Negl. Trop. Dis. 11, e0005329 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huang, H. et al. CD8+ T cell immune response in immunocompetent mice during Zika virus infection. J. Virol. 91, e00900–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Yauch, L. E. et al. A protective role for dengue virus-specific CD8+ T cells. J. Immunol. 182, 4865–4873 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Bassi, M. R. et al. CD8+ T cells complement antibodies in protecting against yellow fever virus. J. Immunol. 194, 1141–1153 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Nazerai, L. et al. A new in vivo model to study protective immunity to Zika virus infection in mice with intact type I interferon signaling. Front. Immunol. 9, 593 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang, Y., Lobigs, M., Lee, E. & Müllbacher, A. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J. Virol. 77, 13323–13334 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jurado, K. A. et al. Antiviral CD8 T cells induce Zika-virus-associated paralysis in mice. Nat. Microbiol. 3, 141–147 (2018). This paper provides evidence that CD8 + T cell–derived immunopathology might be involved in the development of neural complications in ZIKV-infected mice with impaired innate resistance.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Phares, T. W. et al. CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J. Virol. 86, 2416–2427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yauch, L. E. et al. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J. Immunol. 185, 5405–5416 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Brien, J. D., Uhrlaub, J. L. & Nikolich-Zugich, J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol. 181, 8568–8575 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Biswas, S. M., Ayachit, V. M., Sapkal, G. N., Mahamuni, S. A. & Gore, M. M. Japanese encephalitis virus produces a CD4+ Th2 response and associated immunoprotection in an adoptive-transfer murine model. J. Gen. Virol. 90, 818–826 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Weiskopf, D. et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl Acad. Sci. USA 110, E2046–E2053 (2013). This study shows that the breadth and magnitude of the anti-DENV CD8 + T cell response in humans are associated with specific HLA alleles and a protective role for this cell population against DENV.

  41. Hatch, S. et al. Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection. J. Infect. Dis. 203, 1282–1291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiskopf, D. et al. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc. Natl. Acad. Sci. USA 112, E4256–E4263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kohler, S. et al. The early cellular signatures of protective immunity induced by live viral vaccination. Eur. J. Immunol. 42, 2363–2373 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Cimini, E. et al. Human Zika infection induces a reduction of IFN-γ producing CD4 T-cells and a parallel expansion of effector Vδ2 T-cells. Sci. Rep. 7, 6313 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Quaresma, J. A. et al. Hepatocyte lesions and cellular immune response in yellow fever infection. Trans. R. Soc. Trop. Med. Hyg. 101, 161–168 (2007).

    Article  PubMed  Google Scholar 

  46. Mongkolsapaya, J. et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9, 921–927 (2003). This study shows original antigenic sin in dengue infection, in which many DENV-specific T cell responses during secondary dengue had low affinity for the infecting serotype but higher affinity to other serotypes, probably the previously infecting serotype.

    Article  CAS  PubMed  Google Scholar 

  47. Gagnon, S. J., Ennis, F. A. & Rothman, A. L. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4+ cytotoxic T-lymphocyte clones. J. Virol. 73, 3623–3629 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Webster, R. G. Disquisitions of original antigenic sin. I. Evidence in man. J. Exp. Med. 124, 331–345 (1966).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mangada, M. M. et al. Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren. J. Infect. Dis. 185, 1697–1703 (2002).

    Article  PubMed  Google Scholar 

  50. Talarico, L. B. et al. The role of heterotypic DENV-specific CD8+T lymphocytes in an immunocompetent mouse model of secondary dengue virus infection. EBioMedicine 20, 202–216 (2017). This study shows that cross-reactive T cell responses generated from the first infection contribute to the development of hemorrhagic disease in mice secondarily infected with the other serotype.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Elong Ngono, A. et al. Protective role of cross-reactive CD8 T cells against dengue virus infection. EBioMedicine 13, 284–293 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zellweger, R. M. et al. CD8+ T cells can mediate short-term protection against heterotypic dengue virus reinfection in mice. J. Virol. 89, 6494–6505 (2015). This paper addresses the contribution of cross-reactive anti-DENV T cell responses and shows that this type of immunity is required to protect against infection with a heterotypic DENV serotype but not against homotypic reinfection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wen, J. et al. Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8+ T cells. Nat. Microbiol. 2, 17036 (2017). The results presented in this paper not only identify DENV and ZIKV cross-reactive epitopes but also show that the T cell response against ZIKV is altered in DENV-immune and naïve mice.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li, J. et al. Cross-protection induced by Japanese encephalitis vaccines against different genotypes of Dengue viruses in mice. Sci. Rep. 6, 19953 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stettler, K. et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353, 823–826 (2016). This paper provides in vivo evidence of serological interaction between DENV and ZIKV, demonstrating that antibodies to ZIKV can enhance DENV infection in mice.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, H. et al. Structural basis of Zika virus-specific antibody protection. Cell 166, 1016–1027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beltramello, M. et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8, 271–283 (2010). Through analysis of samples from DENV-infected patients, this study shows that the human antibody response is dominated by cross-reactive antibodies to EDI/DII and prM.

    Article  CAS  PubMed  Google Scholar 

  58. Throsby, M. et al. Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus. J. Virol. 80, 6982–6992 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wahala, W. M., Kraus, A. A., Haymore, L. B., Accavitti-Loper, M. A. & de Silva, A. M. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology 392, 103–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Robbiani, D. F. et al. Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico. Cell 169, 597–609.e511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu, L. et al. Delineating antibody recognition against Zika virus during natural infection. JCI Insight 2, e93042 (2017).

    Article  PubMed Central  Google Scholar 

  62. Dejnirattisai, W. et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat. Immunol. 17, 1102–1108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nelson, S. et al. Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog. 4, e1000060 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Fibriansah, G. & Lok, S. M. The development of therapeutic antibodies against dengue virus. Antiviral Res. 128, 7–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Teoh, E. P. et al. The structural basis for serotype-specific neutralization of dengue virus by a human antibody. Sci. Transl. Med. 4, 139ra83 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. de Alwis, R. et al. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl. Trop. Dis. 5, e1188 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fibriansah, G. et al. A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat. Commun. 6, 6341 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Fibriansah, G. et al. A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface. EMBO Mol. Med. 6, 358–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fibriansah, G. et al. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science 349, 88–91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qiu, X. et al. Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies. Nat. Microbiol. 3, 287–294 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Hasan, S. S. et al. A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat. Commun. 8, 14722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaufmann, B. et al. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc. Natl. Acad. Sci. USA 107, 18950–18955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rouvinski, A. et al. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature 520, 109–113 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Abbink, P. et al. Therapeutic and protective efficacy of a dengue antibody against Zika infection in rhesus monkeys. Nat. Med. 24, 721–723 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barba-Spaeth, G. et al. Structural basis of potent Zika–dengue virus antibody cross-neutralization. Nature 536, 48–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Smith, S. A. et al. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J. Virol. 86, 2665–2675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Junjhon, J. et al. Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. J. Virol. 82, 10776–10791 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Watterson, D., Modhiran, N. & Young, P. R. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antiviral Res. 130, 7–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Modhiran, N. et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med. 7, 304ra142 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Puerta-Guardo, H., Glasner, D. R. & Harris, E. Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog. 12, e1005738 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Schlesinger, J. J., Brandriss, M. W. & Walsh, E. E. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J. Immunol. 135, 2805–2809 (1985).

    CAS  PubMed  Google Scholar 

  82. Henchal, E. A., Henchal, L. S. & Schlesinger, J. J. Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J. Gen. Virol. 69, 2101–2107 (1988).

    Article  PubMed  Google Scholar 

  83. Chung, K. M. et al. Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. J. Virol. 80, 1340–1351 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beatty, P. R. et al. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 7, 304ra141 (2015). This paper, together with refs. 79,80 , shows that DENV NS1 is involved in the development of vascular leakage in mice.

    Article  PubMed  CAS  Google Scholar 

  85. Chuang, Y. C., Lin, J., Lin, Y. S., Wang, S. & Yeh, T. M. Dengue virus nonstructural protein 1-induced antibodies cross-react with human plasminogen and enhance its activation. J. Immunol. 196, 1218–1226 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Chuang, Y. C., Lin, Y. S., Liu, H. S. & Yeh, T. M. Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J. Virol. 88, 13759–13768 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Halstead, S. B., Chow, J. S. & Marchette, N. J. Immunological enhancement of dengue virus replication. Nat. New Biol. 243, 24–26 (1973).

    CAS  PubMed  Google Scholar 

  88. Halstead, S. B. & O’Rourke, E. J. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265, 739–741 (1977).

    Article  CAS  PubMed  Google Scholar 

  89. Pierson, T. C. et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1, 135–145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kliks, S. C., Nimmanitya, S., Nisalak, A. & Burke, D. S. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38, 411–419 (1988).

    Article  CAS  PubMed  Google Scholar 

  91. Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hadinegoro, S. R. et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 373, 1195–1206 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Halstead, S. B. & Russell, P. K. Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine 34, 1643–1647 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. SAGE Working Group on Dengue Vaccines and WHO Secretariat. Background paper on dengue vaccines: revision to the background paper from 17 March 2016. SAGE Meeting of April 2018 http://www.who.int/immunization/sage/meetings/2018/april/2_DengueBackgrPaper_SAGE_Apr2018.pdf?ua=1 (2018)

  95. de Alwis, R. et al. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog. 10, e1004386 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Haslwanter, D., Blaas, D., Heinz, F. X. & Stiasny, K. A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathog. 13, e1006643 (2017). This work describes a new modality of ADE in which enhancement of viral entry is derived from an antibody-mediated increase in the exposure of the fusion loop and is independent of other cell-surface proteins.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zellweger, R. M., Eddy, W. E., Tang, W. W., Miller, R. & Shresta, S. CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. J. Immunol. 193, 4117–4124 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Fagbami, A. H., Halstead, S. B., Marchette, N. J. & Larsen, K. Cross-infection enhancement among African flaviviruses by immune mouse ascitic fluids. Cytobios 49, 49–55 (1987).

    CAS  PubMed  Google Scholar 

  99. Halstead, S. B., Porterfield, J. S. & O’Rourke, E. J. Enhancement of dengue virus infection in monocytes by flavivirus antisera. Am. J. Trop. Med. Hyg. 29, 638–642 (1980).

    Article  CAS  PubMed  Google Scholar 

  100. Priyamvada, L. et al. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc. Natl. Acad. Sci. USA 113, 7852–7857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bardina, S. V. et al. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356, 175–180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. George, J. et al. Prior exposure to Zika virus significantly enhances peak Dengue-2 viremia in rhesus macaques. Sci. Rep. 7, 10498 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. McCracken, M. K. et al. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLoS Pathog. 13, e1006487 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Halai, U. A. et al. Maternal Zika virus disease severity, virus load, prior dengue antibodies, and their relationship to birth outcomes. Clin. Infect. Dis. 65, 877–883 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Anderson, K. B. et al. Preexisting Japanese encephalitis virus neutralizing antibodies and increased symptomatic dengue illness in a school-based cohort in Thailand. PLoS Negl. Trop. Dis. 5, e1311 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Saito, Y. et al. Japanese encephalitis vaccine-facilitated dengue virus infection-enhancement antibody in adults. BMC Infect. Dis. 16, 578 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Chan, K. R. et al. Cross-reactive antibodies enhance live attenuated virus infection for increased immunogenicity. Nat. Microbiol. 1, 16164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scherwitzl, I., Mongkolsapaja, J. & Screaton, G. Recent advances in human flavivirus vaccines. Curr. Opin. Virol. 23, 95–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Kirkpatrick, B. D. et al. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci. Transl. Med. 8, 330ra36 (2016).

    Article  PubMed  CAS  Google Scholar 

  110. Guy, B. et al. From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 29, 7229–7241 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Sabchareon, A. et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 380, 1559–1567 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Capeding, M. R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384, 1358–1365 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372, 113–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Sridhar, S. et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N. Engl. J. Med. 379, 327–340 (2018). This study on cumulative safety and efficacy confirms the higher risk of severe dengue among seronegative Dengvaxia recipients than among seronegative vaccine controls.

  115. Lima, N. S., Rolland, M., Modjarrad, K. & Trautmann, L. T cell immunity and Zika virus vaccine development. Trends Immunol. 38, 594–605 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Guy, B. & Jackson, N. Dengue vaccine: hypotheses to understand CYD-TDV-induced protection. Nat. Rev. Microbiol. 14, 45–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Ishikawa, T., Yamanaka, A. & Konishi, E. A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine 32, 1326–1337 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Brault, A. C. et al. A Zika vaccine targeting NS1 protein protects immunocompetent adult mice in a lethal challenge model. Sci. Rep. 7, 14769 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Ishikawa, T. et al. Enhancing the utility of a prM/E-expressing chimeric vaccine for Japanese encephalitisby addition of the JEV NS1 gene.Vaccine 29, 7444–7455 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, M. C. et al. Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J. Immunol. 183, 1797–1803 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Zheng, A., Umashankar, M. & Kielian, M. In vitro and in vivo studies identify important features of dengue virus pr-E protein interactions. PLoS Pathog. 6, e1001157 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Crill, W. D. et al. Sculpting humoral immunity through dengue vaccination to enhance protective immunity. Front. Immunol. 3, 334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Richner, J. M. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125.e1110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rouvinski, A. et al. Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope. Nat. Commun. 8, 15411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Slon Campos, J. L. et al. Temperature-dependent folding allows stable dimerization of secretory and virus-associated E proteins of Dengue and Zika viruses in mammalian cells. Sci. Rep. 7, 966 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust, UK, and the Newton-Medical Research Council, UK. G.R.S. is supported as a Wellcome Trust Senior Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin R. Screaton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slon Campos, J.L., Mongkolsapaya, J. & Screaton, G.R. The immune response against flaviviruses. Nat Immunol 19, 1189–1198 (2018). https://doi.org/10.1038/s41590-018-0210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-018-0210-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing