Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting

Abstract

Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative views of neutrophil heterogeneity in cancer.
Fig. 2: Functional heterogeneity of neutrophils in cancer.
Fig. 3: The effect of major antimicrobial factors of neutrophils on tumor progression.
Fig. 4: Therapeutic targeting of PMN-CAs and PMN-MDSCs.

Similar content being viewed by others

References

  1. Calzetti, F., Finotti, G. & Cassatella, M. A. Current knowledge on the early stages of human neutropoiesis. Immunol. Rev. 314, 111–124 (2023).

    CAS  PubMed  Google Scholar 

  2. Hidalgo, A. & Casanova-Acebes, M. Dimensions of neutrophil life and fate. Semin. Immunol. 57, 101506 (2021).

    CAS  PubMed  Google Scholar 

  3. Cassatella, M. A., Ostberg, N. K., Tamassia, N. & Soehnlein, O. Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol. 40, 648–664 (2019).

    CAS  PubMed  Google Scholar 

  4. Borregaard, N., Sorensen, O. E. & Theilgaard-Monch, K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 28, 340–345 (2007).

    CAS  PubMed  Google Scholar 

  5. Scapini, P., Marini, O., Tecchio, C. & Cassatella, M. A. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol. Rev. 273, 48–60 (2016).

    CAS  PubMed  Google Scholar 

  6. Eruslanov, E. B. et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J. Clin. Invest. 124, 5466–5480 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Sandilands, G. P., McCrae, J., Hill, K., Perry, M. & Baxter, D. Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils. Immunology 119, 562–571 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Othman, A., Sekheri, M. & Filep, J. G. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J. 289, 3932–3953 (2022).

    CAS  PubMed  Google Scholar 

  9. Pirozzolo, G., Gisbertz, S. S., Castoro, C., van Berge Henegouwen, M. I. & Scarpa, M. Neutrophil-to-lymphocyte ratio as prognostic marker in esophageal cancer: a systematic review and meta-analysis. J. Thorac. Dis. 11, 3136–3145 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Vartolomei, M. D. et al. Prognostic role of pretreatment neutrophil-to-lymphocyte ratio (NLR) in patients with non-muscle-invasive bladder cancer (NMIBC): A systematic review and meta-analysis. Urol. Oncol. 36, 389–399 (2018).

    PubMed  Google Scholar 

  11. Mouchli, M., Reddy, S., Gerrard, M., Boardman, L. & Rubio, M. Usefulness of neutrophil-to-lymphocyte ratio (NLR) as a prognostic predictor after treatment of hepatocellular carcinoma. Ann. Hepatol. 22, 100249 (2021).

    PubMed  Google Scholar 

  12. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Palomino-Segura, M., Sicilia, J., Ballesteros, I. & Hidalgo, A. Strategies of neutrophil diversification. Nat. Immunol. 24, 575–584 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    CAS  PubMed  Google Scholar 

  15. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    CAS  PubMed  Google Scholar 

  16. Siwicki, M. & Pittet, M. J. Versatile neutrophil functions in cancer. Semin. Immunol. 57, 101538 (2021).

    CAS  PubMed  Google Scholar 

  17. Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Burn, G. L., Foti, A., Marsman, G., Patel, D. F. & Zychlinsky, A. The neutrophil. Immunity 54, 1377–1391 (2021).

    CAS  PubMed  Google Scholar 

  19. Gabrilovich, D. et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67, 425 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1, aaf8943 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Pettinella, F. et al. Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors. Cell Rep. Med. 5, 101380 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Condamine, T. et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J. Clin. Invest. 124, 2626–2639 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Veglia, F. et al. Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J. Exp. Med. 218, e20201803 (2021). Transcriptional and functional analysis of three populations of mouse neutrophils with identification of CD14 as a potential marker of PMN-MDSCs. Demonstrates a link between tumor PMN-MDSC signature and clinical outcome.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bronte, V. et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170, 270–278 (2003).

    CAS  PubMed  Google Scholar 

  28. Sinha, P., Clements, V. K., Fulton, A. M. & Ostrand-Rosenberg, S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67, 4507–4513 (2007).

    CAS  PubMed  Google Scholar 

  29. Lu, T. et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest. 121, 4015–4029 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Corzo, C. A. et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182, 5693–5701 (2009).

    CAS  PubMed  Google Scholar 

  31. Yao, M. et al. Single-cell transcriptomic analysis reveals heterogeneous features of myeloid-derived suppressor cells in newborns. Front. Immunol. 15, 1367230 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Antuamwine, B. B. et al. N1 versus N2 and PMN-MDSC: A critical appraisal of current concepts on tumor-associated neutrophils and new directions for human oncology. Immunol. Rev. 314, 250–279 (2023).

    CAS  PubMed  Google Scholar 

  33. Wang, P. F. et al. Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: a meta-analysis of 40 studies. Oncoimmunology 7, e1494113 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Moller, M. et al. Myeloid-derived suppressor cells in peripheral blood as predictive biomarkers in patients with solid tumors undergoing immune checkpoint therapy: systematic review and meta-analysis. Front. Immunol. 15, 1403771 (2024). Meta-analysis of 17 clinical studies demonstrating an association of PMN-MDSCs with negative clinical outcome in patients treated with check-point inhibitors.

    PubMed  PubMed Central  Google Scholar 

  35. Kobayashi, T. et al. Increased circulating polymorphonuclear myeloid-derived suppressor cells are associated with prognosis of metastatic castration-resistant prostate cancer. Front. Immunol. 15, 1372771 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Patel, S. et al. Unique pattern of neutrophil migration and function during tumor progression. Nat. Immunol. 19, 1236–1247 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Serafini, P. et al. High-dose GM-CSF-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64, 6337–6343 (2004).

    CAS  PubMed  Google Scholar 

  38. Quail, D. F. et al. Neutrophil phenotypes and functions in cancer: a consensus statement. J. Exp. Med. 219, e20220011 (2022). Review of phenotypic complexity and functional diversity of classically activated PMNs in the tumor microenvironment.

  39. Rawat, K. & Shrivastava, A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm. Res. 71, 1477–1488 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Glover, A., Zhang, Z. & Shannon-Lowe, C. Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Front. Immunol. 14, 1161848 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mastio, J. et al. Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. J. Exp. Med. 216, 2150–2169 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, S. et al. The dual roles of activating transcription factor 3 (ATF3) in inflammation, apoptosis, ferroptosis, and pathogen infection responses. Int. J. Mol. Sci. 25, 824 (2024).

  44. Kopacz, A. et al. Overlooked and valuable facts to know in the NRF2/KEAP1 field. Free Radic. Biol. Med. 192, 37–49 (2022).

    CAS  PubMed  Google Scholar 

  45. Dominguez, G. A. et al. Selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody. Clin. Cancer Res. 23, 2942–2950 (2017).

    CAS  PubMed  Google Scholar 

  46. Gong, Z. et al. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci. Immunol. 8, eadd5204 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xue, R. et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).

    CAS  PubMed  Google Scholar 

  49. Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Raskov, H., Orhan, A., Gaggar, S. & Gogenur, I. Neutrophils and polymorphonuclear myeloid-derived suppressor cells: an emerging battleground in cancer therapy. Oncogenesis 11, 22 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, J., Zhao, Y., Zhao, K., Yin, K. & Wang, S. Function of reactive oxygen species in myeloid-derived suppressor cells. Front. Immunol. 14, 1226443 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Salvagno, C., Mandula, J. K., Rodriguez, P. C. & Cubillos-Ruiz, J. R. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 8, 930–943 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tcyganov, E. N. et al. Distinct mechanisms govern populations of myeloid-derived suppressor cells in chronic viral infection and cancer. J. Clin. Invest. 131, e145971 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mohamed, E. et al. The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. Immunity 52, 668–682 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai, E. et al. A guideline on the molecular ecosystem regulating ferroptosis. Nat. Cell Biol. 26, 1447–1457 (2024).

  57. van Vlerken-Ysla, L., Tyurina, Y. Y., Kagan, V. E. & Gabrilovich, D. I. Functional states of myeloid cells in cancer. Cancer Cell 41, 490–504 (2023).

    PubMed  PubMed Central  Google Scholar 

  58. Kim, R. et al. Ferroptosis of tumor neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022). Identification of ferroptosis as a major mechanism of immune suppression in tumor PMN-MDSCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, Z. et al. Prognostic prediction and immune infiltration analysis based on ferroptosis and EMT state in hepatocellular carcinoma. Front. Immunol. 13, 1076045 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, Y. et al. Clinical characterization of the expression of insulin-like growth factor binding protein 1 and tumor immunosuppression caused by ferroptosis of neutrophils in non-small cell lung cancer. Int. J. Gen. Med. 16, 997–1015 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Katlinski, K. V. et al. Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell 31, 194–207 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nam, S. et al. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J. Leukoc. Biol. 100, 1273–1284 (2016).

    CAS  PubMed  Google Scholar 

  63. Metzger, P. et al. Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. J. Immunother. Cancer 7, 288 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Alicea-Torres, K. et al. Immune suppressive activity of myeloid-derived suppressor cells in cancer requires inactivation of the type I interferon pathway. Nat. Commun. 12, 1717 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kalafati, L. et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183, 771–785 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hardaker, E. L. et al. The ATR inhibitor ceralasertib potentiates cancer checkpoint immunotherapy by regulating the tumor microenvironment. Nat. Commun. 15, 1700 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun, Z. & Yang, P. Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol. 5, 182–190 (2004).

    CAS  PubMed  Google Scholar 

  68. Foekens, J. A. et al. The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Res. 63, 337–341 (2003).

    CAS  PubMed  Google Scholar 

  69. Clancy, D. M. et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep. 22, 2937–2950 (2018).

    CAS  PubMed  Google Scholar 

  70. Krotova, K., Khodayari, N., Oshins, R., Aslanidi, G. & Brantly, M. L. Neutrophil elastase promotes macrophage cell adhesion and cytokine production through the integrin-Src kinases pathway. Sci. Rep. 10, 15874 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chua, F. & Laurent, G. J. Neutrophil elastase: mediator of extracellular matrix destruction and accumulation. Proc. Am. Thorac. Soc. 3, 424–427 (2006).

    CAS  PubMed  Google Scholar 

  72. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Mayer, C. et al. Neutrophil granulocytes in ovarian cancer - induction of epithelial-to-mesenchymal-transition and tumor cell migration. J. Cancer 7, 546–554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Deryugina, E. et al. Neutrophil elastase facilitates tumor cell intravasation and early metastatic events. iScience 23, 101799 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Caruso, J. A., Akli, S., Pageon, L., Hunt, K. K. & Keyomarsi, K. The serine protease inhibitor elafin maintains normal growth control by opposing the mitogenic effects of neutrophil elastase. Oncogene 34, 3556–3567 (2015).

    CAS  PubMed  Google Scholar 

  76. Houghton, A. M. et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 16, 219–223 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wada, Y. et al. Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncol. Rep. 17, 161–167 (2007).

    CAS  PubMed  Google Scholar 

  78. Jackson, P. L. et al. Human neutrophil elastase-mediated cleavage sites of MMP-9 and TIMP-1: implications to cystic fibrosis proteolytic dysfunction. Mol. Med. 16, 159–166 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tirouvanziam, R. et al. Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc. Natl Acad. Sci. USA 105, 4335–4339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Folds, J. D., Prince, H. & Spitznagel, J. K. Limited cleavage of human immunoglobulins by elastase of human neutrophil polymorphonuclear granulocytes. Possible modulator of immune complex disease. Lab Invest. 39, 313–321 (1978).

    CAS  PubMed  Google Scholar 

  81. Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chawla, A. et al. Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells. Cancer Immunol. Immunother. 65, 741–751 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Peters, H. L. et al. Serine proteases enhance immunogenic antigen presentation on lung cancer cells. Cancer Immunol. Res. 5, 319–329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kisker, O. et al. Generation of multiple angiogenesis inhibitors by human pancreatic cancer. Cancer Res. 61, 7298–7304 (2001).

    CAS  PubMed  Google Scholar 

  85. Fischer, B. M. et al. ErbB2 activity is required for airway epithelial repair following neutrophil elastase exposure. FASEB J. 19, 1374–1376 (2005).

    CAS  PubMed  Google Scholar 

  86. Rapoport, B. L. et al. High mobility group box 1 in human cancer. Cells 9, 1664 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cui, C. et al. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell 184, 3163–3177 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Munder, M. et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105, 2549–2556 (2005).

    CAS  PubMed  Google Scholar 

  89. Jacobsen, L. C., Theilgaard-Monch, K., Christensen, E. I. & Borregaard, N. Arginase 1 is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils. Blood 109, 3084–3087 (2007).

    CAS  PubMed  Google Scholar 

  90. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Raber, P., Ochoa, A. C. & Rodriguez, P. C. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol. Invest. 41, 614–634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Feldmeyer, N. et al. Arginine deficiency leads to impaired cofilin dephosphorylation in activated human T lymphocytes. Int. Immunol. 24, 303–313 (2012).

    CAS  PubMed  Google Scholar 

  94. Munder, M. et al. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion. PLoS ONE 8, e63521 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cane, S. et al. Neutralization of NET-associated human ARG1 enhances cancer immunotherapy. Sci. Transl. Med. 15, eabq6221 (2023). Identification of the mechanism of immunosuppressive NET mediated by ARG1.

    CAS  PubMed  Google Scholar 

  96. Ensor, C. M., Holtsberg, F. W., Bomalaski, J. S. & Clark, M. A. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62, 5443–5450 (2002).

    CAS  PubMed  Google Scholar 

  97. Hackett, C. S. et al. Expression quantitative trait loci and receptor pharmacology implicate Arg1 and the GABA-A receptor as therapeutic targets in neuroblastoma. Cell Rep. 9, 1034–1046 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, H. et al. Activities of arginase I and II are limiting for endothelial cell proliferation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R64–R69 (2002).

    CAS  PubMed  Google Scholar 

  99. Nguyen, G. T., Green, E. R. & Mecsas, J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell Infect. Microbiol. 7, 373 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Kennel, K. B. & Greten, F. R. Immune cell - produced ROS and their impact on tumor growth and metastasis. Redox Biol. 42, 101891 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mahiddine, K. et al. Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils. J. Clin. Invest. 130, 389–403 (2020).

    CAS  PubMed  Google Scholar 

  104. Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Biedron, R., Konopinski, M. K., Marcinkiewicz, J. & Jozefowski, S. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages. PLoS ONE 10, e0123293 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).

    CAS  PubMed  Google Scholar 

  107. Moloney, J. N. & Cotter, T. G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50–64 (2018).

    CAS  PubMed  Google Scholar 

  108. Wculek, S. K., Bridgeman, V. L., Peakman, F. & Malanchi, I. Early neutrophil responses to chemical carcinogenesis shape long-term lung cancer susceptibility. iScience 23, 101277 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Canli, O. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32, 869–883 (2017).

    CAS  PubMed  Google Scholar 

  110. Knaapen, A. M. et al. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic. Biol. Med. 27, 234–240 (1999).

    CAS  PubMed  Google Scholar 

  111. Shinohara, M. et al. Reactive oxygen generated by NADPH oxidase 1 (Nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J. Biol. Chem. 285, 4481–4488 (2010).

    CAS  PubMed  Google Scholar 

  112. Schmielau, J. & Finn, O. J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61, 4756–4760 (2001).

    CAS  PubMed  Google Scholar 

  113. Li, M. et al. Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal. 22, 1469–1476 (2010).

    CAS  PubMed  Google Scholar 

  114. Hildeman, D. A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744 (1999).

    CAS  PubMed  Google Scholar 

  115. Bert, S., Nadkarni, S. & Perretti, M. Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunol. Rev. 314, 36–49 (2023).

    CAS  PubMed  Google Scholar 

  116. Blank, C. U. et al. Defining T cell exhaustion. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Tcyganov, E. N. et al. Peroxynitrite in the tumor microenvironment changes the profile of antigens allowing escape from cancer immunotherapy. Cancer Cell 40, 1173–1189 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Molon, B. et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 208, 1949–1962 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Klopotowska, M. et al. PRDX-1 supports the survival and antitumor activity of primary and CAR-modified NK cells under oxidative stress. Cancer Immunol. Res. 10, 228–244 (2022).

    CAS  PubMed  Google Scholar 

  121. Li, P. et al. Dual roles of neutrophils in metastatic colonization are governed by the host NK cell status. Nat. Commun. 11, 4387 (2020).

    PubMed  PubMed Central  Google Scholar 

  122. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    CAS  PubMed  Google Scholar 

  123. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Adrover, J. M., McDowell, S. A. C., He, X. Y., Quail, D. F. & Egeblad, M. NETworking with cancer: the bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 41, 505–526 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Deng, H. et al. A novel selective inhibitor JBI-589 targets PAD4-mediated neutrophil migration to suppress tumor progression. Cancer Res. 82, 3561–3572 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, M. et al. A novel peptidylarginine deiminase 4 (PAD4) inhibitor BMS-P5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma. Mol. Cancer Ther. 19, 1530–1538 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, Y. et al. Neutrophil extracellular traps induced by chemotherapy inhibit tumor growth in murine models of colorectal cancer. J. Clin. Invest. 134, e175031 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Suhail, Y. et al. Oscillatory hypoxia induced gene expression predicts low survival in human breast cancer patients. Mol. Carcinog. https://doi.org/10.1002/mc.23810 (2024).

  130. Barry, S. T., Gabrilovich, D. I., Sansom, O. J., Campbell, A. D. & Morton, J. P. Therapeutic targeting of tumour myeloid cells. Nat. Rev. Cancer 23, 216–237 (2023). Review of current theraputic efforts targeting myeloid cells.

    CAS  PubMed  Google Scholar 

  131. Grover, A., Sanseviero, E., Timosenko, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells: a propitious road to clinic. Cancer Discov. 11, 2693–2706 (2021).

    CAS  PubMed  Google Scholar 

  132. Ozbay Kurt, F. G., Lasser, S., Arkhypov, I., Utikal, J. & Umansky, V. Enhancing immunotherapy response in melanoma: myeloid-derived suppressor cells as a therapeutic target. J. Clin. Invest. 133, e170762 (2023). Review of current therapeutic strategies targeting MDSCs.

  133. Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Esteban-Fabro, R. et al. Cabozantinib enhances anti-PD1 activity and elicits a neutrophil-based immune response in hepatocellular carcinoma. Clin. Cancer Res. 28, 2449–2460 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gungabeesoon, J. et al. A neutrophil response linked to tumor control in immunotherapy. Cell 186, 1448–1464 (2023). Successful cancer immunotherapy expands high numbers of PMNs in both tumor-bearing mice and patients with cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Benguigui, M. et al. Interferon-stimulated neutrophils as a predictor of immunotherapy response. Cancer Cell 42, 253–265 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Andzinski, L. et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 138, 1982–1993 (2016).

    CAS  PubMed  Google Scholar 

  138. Skoulidis, F. et al. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature 635, 462–471 (2024).

  139. Linde, I. L. et al. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 41, 356–372 (2023). Manipulation of the tumor microenvironment by successful immune therapy to promote PMNs that are able to support tumor clearance and reduce metastasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hirschhorn, D. et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 186, 1432–1447 (2023). Cancer T cell immunotherapy activates antitumor PMNs that are able to kill antigen-loss variant clones that escaped the primary T cell killing.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Singhal, S. et al. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30, 120–135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Pylaeva, E. et al. During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes. Cell Rep. 40, 111171 (2022).

    CAS  PubMed  Google Scholar 

  143. Onozato, M. L. et al. Tumor islands in resected early-stage lung adenocarcinomas are associated with unique clinicopathologic and molecular characteristics and worse prognosis. Am. J. Surg. Pathol. 37, 287–294 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. Matlung, H. L. et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 23, 3946–3959 (2018).

    CAS  PubMed  Google Scholar 

  145. Pham, T., Mero, P. & Booth, J. W. Dynamics of macrophage trogocytosis of rituximab-coated B cells. PLoS ONE 6, e14498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Valgardsdottir, R. et al. Human neutrophils mediate trogocytosis rather than phagocytosis of CLL B cells opsonized with anti-CD20 antibodies. Blood 129, 2636–2644 (2017).

    CAS  PubMed  Google Scholar 

  147. Singhal, S. et al. Human tumor-associated macrophages and neutrophils regulate antitumor antibody efficacy through lethal and sublethal trogocytosis. Cancer Res. 84, 1029–1047 (2024). Demonstration of the dual role of trogocytosis in tumor tissues of patients with cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health grants R01CA266342 and R01CA272946 to Y.N.

Author information

Authors and Affiliations

Authors

Contributions

E.E., Y.N. and D.I.G. wrote and edited manuscript.

Corresponding author

Correspondence to Dmitry I. Gabrilovich.

Ethics declarations

Competing interests

D.I.G. is an employee and shareholder of AstraZeneca. E.E. and Y.N. declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Vassiliki Boussiotis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ioana Staicu, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eruslanov, E., Nefedova, Y. & Gabrilovich, D.I. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 26, 17–28 (2025). https://doi.org/10.1038/s41590-024-02029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-024-02029-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer