Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuroepithelial VIP–VIPR1 interactions differentially control enteric type 1 and type 2 immunity

Abstract

The nervous and immune systems cooperate to regulate mucosal barrier integrity. Nevertheless, whether enteric neurons establish neuroepithelial interactions to coordinate immunity remains elusive. Here, we identified neuroepithelial interactions that differentially control intestinal type 1 and type 2 immunity. Gut epithelial cells expressed vasoactive intestinal peptide (VIP) receptor 1 (VIPR1), and chemogenetic modulation of enteric VIPergic neurons led to altered epithelial-derived cytokines. Epithelial-intrinsic deletion of Vipr1 resulted in diminished type 1 immunity, including reduced type 1 alarmins and intraepithelial lymphocytes. In contrast, epithelial Vipr1 deficiency led to enhanced type 2 immunity, comprising increased type 2 alarmins, tuft cells and activated group 2 innate lymphoid cells. Disruption of neuroepithelial VIP–VIPR1 interactions resulted in increased susceptibility to invasive bacterial infection, which contrasted with enhanced resistance to parasite infection. Our work identifies a multi-tissue axis that controls type 1 and type 2 immunity, deciphering how neuroepithelial interactions distinctively set gut immunity programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alarmins and neuroendocrine receptors are expressed by intestinal epithelial cells.
Fig. 2: Enteric VIPergic neurons control epithelial-derived alarmins.
Fig. 3: Epithelial-intrinsic VIPR1 deficiency reshapes tuft cells and alarmins.
Fig. 4: Neuroepithelial interactions shape intestinal IELs.
Fig. 5: Neuroepithelial interactions shape gut defense to bacterial infections.
Fig. 6: Neuroepithelial interactions shape intestinal ILC2.
Fig. 7: Neuroepithelial interactions shape gut defense to worm infections.

Similar content being viewed by others

Data availability

The datasets generated in this study are available from the corresponding author upon request. Bulk RNA-seq and single-cell RNA-seq data have been deposited in the NCBI Gene Expression Omnibus under accession numbers GSE308754 and GSE308755, respectively. Source data are provided with this paper.

References

  1. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. Lockhart, A., Mucida, D. & Bilate, A. M. Intraepithelial lymphocytes of the intestine. Annu Rev. Immunol. 42, 289–316 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. Spits, H. & Mjosberg, J. Heterogeneity of type 2 innate lymphoid cells. Nat. Rev. Immunol. 22, 701–712 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).

    Article  Google Scholar 

  6. Godinho-Silva, C., Rendas, M. & Veiga-Fernandes, H. Neuro-ILC interactions in host physiology and defence. Eur. J. Immunol. 55, e70037 (2025).

    Article  PubMed  CAS  Google Scholar 

  7. Klein Wolterink, R. G. J., Wu, G. S., Chiu, I. M. & Veiga-Fernandes, H. Neuroimmune interactions in peripheral organs. Annu. Rev. Neurosci. 45, 339–360 (2022).

    Article  PubMed  CAS  Google Scholar 

  8. Klose, C. S. N. & Veiga-Fernandes, H. Neuroimmune interactions in peripheral tissues. Eur. J. Immunol. 51, 1602–1614 (2021).

    Article  PubMed  CAS  Google Scholar 

  9. Pirzgalska, R. M. & Veiga-Fernandes, H. Type 2 neuroimmune circuits in the shaping of physiology. Immunity 56, 695–703 (2023).

    Article  PubMed  CAS  Google Scholar 

  10. Sestan, M. et al. Neuronal–ILC2 interactions regulate pancreatic glucagon and glucose homeostasis. Science 387, eadi3624 (2025).

    Article  PubMed  CAS  Google Scholar 

  11. Moriyama, S. et al. β 2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359, 1056–1061 (2018).

    Article  PubMed  CAS  Google Scholar 

  12. Uddin, J. et al. CGRP-related neuropeptide adrenomedullin 2 promotes tissue-protective ILC2 responses and limits intestinal inflammation. Nat. Immunol. 26, 1516–1526 (2025).

    Article  PubMed  CAS  Google Scholar 

  13. Talbot, S. et al. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87, 341–354 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Pascal, M. et al. The neuropeptide VIP potentiates intestinal innate type 2 and type 3 immunity in response to feeding. Mucosal Immunol. 15, 629–641 (2022).

    Article  PubMed  CAS  Google Scholar 

  16. Talbot, J. et al. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 579, 575–580 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Seillet, C. et al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol. 21, 168–177 (2020).

    Article  PubMed  CAS  Google Scholar 

  18. Lei, C. et al. Enteric VIP-producing neurons maintain gut microbiota homeostasis through regulating epithelium fucosylation. Cell Host Microbe 30, 1417–1434.e1418 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Schwerdtfeger, L. A. & Tobet, S. A. Vasoactive intestinal peptide regulates ileal goblet cell production in mice. Physiol. Rep. 8, e14363 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu, X. et al. Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice. PLoS ONE 10, e0125225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ericsson, A. C. et al. The G protein-coupled receptor, VPAC1, mediates vasoactive intestinal peptide-dependent functional homeostasis of the gut microbiota. Gastro. Hep. Adv. 1, 253–264 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morarach, K. et al. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat. Neurosci. 24, 34–46 (2021).

    Article  PubMed  CAS  Google Scholar 

  23. Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e1623 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Moody, T. W., Ito, T., Osefo, N. & Jensen, R. T. VIP and PACAP: recent insights into their functions/roles in physiology and disease from molecular and genetic studies. Curr. Opin. Endocrinol. Diabetes Obes. 18, 61–67 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Timmermans, S., Souffriau, J. & Libert, C. A general introduction to glucocorticoid biology. Front. Immunol. 10, 1545 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Godinho-Silva, C. et al. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574, 254–258 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Shimba, A. et al. Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleukin-7 receptor and CXCR4. Immunity 48, 286–298 e286 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Lin, X. et al. IL-17RA-signaling in Lgr5(+) intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity 55, 237–253.e238 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schneider, C. et al. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174, 271–284.e214 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nadjsombati, M. S. et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49, 33–41.e37 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Veiga-Fernandes, H. & Mucida, D. Neuro-immune interactions at barrier surfaces. Cell 165, 801–811 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Larsson, L. I. et al. Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. PNAS 73, 3197–3200 (1976).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Costa, M. & Furness, J. B. The origins, pathways and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine. Neuroscience 8, 665–676 (1983).

    Article  PubMed  CAS  Google Scholar 

  34. Iwasaki, M., Akiba, Y. & Kaunitz, J. D. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res https://doi.org/10.12688/f1000research.18039.1 (2019).

  35. Tuganbaev, T. et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 182, 1441–1459.e1421 (2020).

    Article  PubMed  CAS  Google Scholar 

  36. Loh, D. H., Abad, C., Colwell, C. S. & Waschek, J. A. Vasoactive intestinal peptide is critical for circadian regulation of glucocorticoids. Neuroendocrinology 88, 246–255 (2008).

    Article  PubMed  CAS  Google Scholar 

  37. Fabricius, D. et al. Characterization of intestinal and pancreatic dysfunction in VPAC1-null mutant mouse. Pancreas 40, 861–871 (2011).

    Article  PubMed  CAS  Google Scholar 

  38. Lelievre, V. et al. Gastrointestinal dysfunction in mice with a targeted mutation in the gene encoding vasoactive intestinal polypeptide: a model for the study of intestinal ileus and Hirschsprung’s disease. Peptides 28, 1688–1699 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192, 767–780 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lennicke, C. et al. Loss of epithelium-specific GPx2 results in aberrant cell fate decisions during intestinal differentiation. Oncotarget 9, 539–552 (2018).

    Article  PubMed  Google Scholar 

  41. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stoklasek, T. A., Schluns, K. S. & Lefrancois, L. Combined IL-15/IL-15Rα immunotherapy maximizes IL-15 activity in vivo. J. Immunol. 177, 6072–6080 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Ma, L. J., Acero, L. F., Zal, T. & Schluns, K. S. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8αα IELs. J. Immunol. 183, 1044–1054 (2009).

    Article  PubMed  CAS  Google Scholar 

  44. Chawla, A. S. et al. Distinct cell death pathways induced by granzymes collectively protect against intestinal Salmonella infection. Mucosal Immunol. 17, 1242–1255 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794.e713 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Helou, D. G. et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat. Commun. 11, 3998 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang, Y. et al. Bi-directional communication between intrinsic enteric neurons and ILC2s inhibits host defense against helminth infection. Immunity 58, 465–480.e468 (2025).

    Article  PubMed  CAS  Google Scholar 

  48. Barilla, R. M. et al. Type 2 cytokines act on enteric sensory neurons to regulate neuropeptide-driven host defense. Science 389, 260–267 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Feng, X. et al. Tuft cell IL-17RB restrains IL-25 bioavailability and reveals context-dependent ILC2 hypoproliferation. Nat. Immunol. 26, 567–581 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. He, S. et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature 566, 115–119 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sullivan, Z. A. et al. γδT cells regulate the intestinal response to nutrient sensing. Science https://doi.org/10.1126/science.aba8310 (2021).

  52. Veiga-Fernandes, H. & Freitas, A. A. The S(c)ensory immune system theory. Trends Immunol. https://doi.org/10.1016/j.it.2017.02.007 (2017).

  53. Madison, B. B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    Article  PubMed  CAS  Google Scholar 

  55. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mittelstadt, P. R., Monteiro, J. P. & Ashwell, J. D. Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J. Clin. Investig. 122, 2384–2394 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sciolino, N. R. et al. Recombinase-dependent mouse lines for chemogenetic activation of genetically defined cell types. Cell Rep. 15, 2563–2573 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhu, H. et al. Cre-dependent DREADD (designer receptors exclusively activated by designer drugs) mice. Genesis 54, 439–446 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  PubMed  CAS  Google Scholar 

  60. Maekawa, Y. et al. Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat. Immunol. 9, 1140–1147 (2008).

    Article  PubMed  CAS  Google Scholar 

  61. Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cardoso, F. et al. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 597, 410–414 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Fonseca-Pereira, D. et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514, 98–101 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article  PubMed  CAS  Google Scholar 

  67. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 23, 27 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Jin, S., Plikus, M. V. & Nie, Q. CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics. Nat. Protoc. 20, 180–219 (2025).

    Article  PubMed  CAS  Google Scholar 

  70. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  PubMed  CAS  Google Scholar 

  71. Harrison, P. W. et al. Ensembl 2024. Nucleic Acids Res. 52, D891–D899 (2024).

    Article  PubMed  CAS  Google Scholar 

  72. Matsumoto, K. et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nat. Protoc. 14, 3506–3537 (2019).

    Article  PubMed  CAS  Google Scholar 

  73. Obata, Y. & Pachnis, V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151, 836–844 (2016).

    Article  PubMed  CAS  Google Scholar 

  74. Kugler, S., Kilic, E. & Bahr, M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. 10, 337–347 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Rastelli, D. et al. Diminished androgen levels are linked to irritable bowel syndrome and cause bowel dysfunction in mice. J. Clin. Invest. https://doi.org/10.1172/JCI150789 (2022).

  76. Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature 583, 441–446 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Klose, C. S. et al. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8αα(+) intraepithelial lymphocyte development. Immunity 41, 230–243 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Balbontin, R., Vlamakis, H. & Kolter, R. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization. Microb. Biotechnol. 7, 589–600 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bouchery, T. et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat. Commun. 6, 6970 (2015).

    Article  PubMed  CAS  Google Scholar 

  80. Erben, U. et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 7, 4557–4576 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 265–273 (Springer International Publishing, 2018).

Download references

Acknowledgements

We thank the Vivarium, Flow Cytometry, Histopathology, Advanced BioImaging and BioOptics Experimental Platform, Molecular Biology, Hardware and Software Platform, Glass Wash, and Media platforms at Champalimaud Foundation. We thank Congento LISBOA-01-0145-FEDER-022170. We thank Mariana Monteiro (Histopathology platform, Champalimaud Foundation) for quantification of goblet, tuft and Ki67+ cells. We thank M. Patrício and S. Tehrani (Champalimaud Foundation, Portugal) for technical help with N.brasiliensis larvae. S.entericaserovar Typhimurium 14028 was kindly provided by I. Gordo, GIMM, Portugal. Infective (iL3) worms of N.brasiliensis were kindly provided by J. Allen, University of Manchester, UK. We thank C. Schneider (University of Zurich, Switzerland), M. Rao (Harvard Medical School, USA), P. Bastos, M. Martinez-Lopez, A. Rasteiro and M. Aliseychik (Champalimaud Foundation, Portugal) for helpful discussions. R.M.P. was supported by FCT (CEECIND/03601/2018; PTDC/MED-IMU/6381/2020), European Crohn’s and Colitis Organisation Grant, the European Foundation for the Study of Diabetes (EFSD)/Lilly Young Investigator award, EFSD/Novo Nordisk (NN) Rising Star Fellowship and the European Association for the Study of Obesity/NN grant. J.R. was supported by EU HORIZON-MISS-2021-CANCER-02-03 (GENIAL 101096312). C.G.-S. was supported FCT (2023.07506.CEECIND and PTDC/MED-IMU/2189/2021). M.R. was supported by FCT (PTDC/MED-IMU/2189/2021). C.W. was supported by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048 and WI 4554/6-1. C.S.N.K. was funded by DFG, under Germany’s Excellence Strategy – EXC 3118/1 – project 533770413. V.M.L was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases. M.F. and J.T. were supported by la Caixa Foundation (LCF/PR/HR22/52420007) and FCT (2022.06145.PTDC). C.M.M. and V.C. were supported by the European Research Council (101116335) and by the European Haematology Association. H.V.-F. was supported by the European Research Council (647274 and 101097830); Paul G. Allen Frontiers Group (12826); Chan Zuckerberg Initiative (INFL-0000000193); La Caixa (HR20-00841); EU HORIZON-MISS-2021-CANCER-02-03 (GENIAL 101096312) and FCT (PTDC/MED-IMU/6653/2020).

Author information

Authors and Affiliations

Authors

Contributions

Initial observations leading to the study: R.M.P.; conceptualization: R.M.P. and H.V.-F.; methodology: R.M.P., B.H.-A., B.R., E.d.S., J.T., C.G.-S., M.R., T.C., V.C., R.R.-T., C.W., C.S.N.K., T.C., V.M.L., C.M.M., M.F. and H.V.-F.; investigation: R.M.P., B.H.-A., B.R., E.d.S., J.T., J.R., C.G.-S., M.R., M.P., I.G., V.C., M.O.J. and P.M.F.; visualization: R.M.P., B.H.-A., E.d.S. and T.C.; funding acquisition: R.M.P. and H.V.-F.; project administration: H.R. and H.V.-F.; supervision: R.M.P. and H.V.-F.; and writing: R.M.P. and H.V.-F.

Corresponding author

Correspondence to Henrique Veiga-Fernandes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: L. A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Epithelia-autonomous glucocorticoid signals are dispensable to IELs and ILC2 in the small intestine.

(ac) Flow cytometry gating strategy. a, small intestinal epithelial cells. b, small intestinal IELs. c, small intestinal ILC2s in the lamina propria (d, e) Flow cytometry validation of ILC gating strategy with transcription factors. d, GATA2 for ILC2. e, RORγt for ILC3. f, Flow cytometry analysis of small intestinal IELs from Nr3c1fl (n = 7) and Nr3c1∆Villin (n = 6) mice. g, Flow cytometry analysis of small intestinal ILC2s from the lamina propria of Nr3c1fl (n = 5) and Nr3c1∆Villin (n = 5) mice. (f, g) Mean and error bars: s.e.m. n represents biologically independent animals. (f, g) Two-tailed unpaired t test with Welch correction.

Source data

Extended Data Fig. 2 VIPergic modulation of epithelial-derived alarmins.

a, Representative images of CD3+cells in the duodenum obtained by confocal microscopy. Scale bar, 20μm. VIPergic neurons (red); CD3+cells (green). b, Representative plots from flow cytometry analysis of small intestinal lamina propria of R26-TomatoVIP mice. c, Relative expression of type 1 and type 2 alarmins in purified intestinal epithelial cells from the duodenum of R26-hM3Dqfl (n = 3) and R26-hM3DqVIP (n = 3) mice under steady-state conditions, without CNO administration. (df) Systemic chemogenetic manipulation of VIP-expressing cells. d, Relative expression of type 2 alarmins in purified epithelial cells from the duodenum of R26-hM3Dqfl (n = 8) and R26-hM3DqVIP (n = 8) mice following systemic CNO-driven chemogenetic activation. e, Glucocorticoid levels in the serum of R26-hM3Dqfl (n = 5) and R26-hM3DqVIP (n = 6) mice following CNO-driven chemogenetic activation. Right panel depicts representative images of spleens from R26-hM3Dqfl and R26-hM3DqVIP mice following CNO-driven chemogenetic activation. f, Relative expression of type 2 alarmins in purified epithelial cells from the duodenum of R26-hM4Difl (n = 8) and R26-hM4DiVIP (n = 8) mice following CNO-driven chemogenetic inhibition. g, Validation of infection efficiency in duodenal chemogenetic activation (top) and inhibition (bottom) by confocal microscopy of duodenal sections. Scale bar, 20μm. AAV9-targetting construct (magenta), VIPergic neurons (yellow), nuclei (DAPI, blue). h, VIP levels in the duodenum from Vip-Cre mice (Vip-Cre.AAV9-hM3DqGut n = 6, represented in magenta) and control littermates (WT.AAV9-hM3DqGut n = 6, represented in dark gray) injected with AAV9-carrying activatory DREADDSs and after CNO-driven activation. i, Relative expression of mouse Vipr1 and Vipr2 (Left) (n = 9) and human VIPR1 and VIPR2 (Right) (n = 12) in small intestinal epithelial cells. (cf, h, i) Mean and error bars: s.e.m. n represents biologically independent animals or samples. (cf, h, i) Two-tailed unpaired t test with Welch correction.

Source data

Extended Data Fig. 3 Vipr1 deletion in intestinal epithelial cells.

a, Graphical representation of Vipr1 gene targeting. Blue boxes represent exons; neo: neomycin resistance cassette; FRT: recognition sequence for flp recombinase; loxP: recognition sequence for Cre recombinase. b, Example of genotype PCR of Vipr1fl/fl mice. Primer sequences are provided in the Methods section. ntc-no template control. c, scRNA-seq analysis of Vipr1 and Vipr2 expression in small intestinal epithelial cells from Vipr1fl and Vipr1∆Villin mice. Data shown are representative of intestinal segments collected from two animals per group. d, Representative hematoxylin and eosin (H&E) staining of small intestinal tissue (duodenum-left; ileum-right) from Vipr1fl and Vipr1∆Villin mice. Original magnification 5x (upper row: scale bar, 200μm) and 40x (lower row: scale bar, 20μm). e, Ki-67 index in the duodenum (upper panel) and ileum (lower panel) from Vipr1fl (n = 6–7) and Vipr1∆Villin (n = 6) mice. f, Representative anti-Ki-67 staining in the duodenum (upper panels) and ileum (lower panels) from Vipr1fl and Vipr1∆Villin mice. Scale bar, 40μm (e) Mean and error bars: s.e.m. n represents biologically independent samples. Two-tailed unpaired t test with Welch correction.

Source data

Extended Data Fig. 4 Profiling in Vipr1 conditional knockout mice and tuft cell gating.

a, VIP levels in the small intestine (duodenum) from Vipr1fl (n = 6) and Vipr1∆Villin (n = 5) mice. b, VIP levels in serum from Vipr1fl (n = 5) and Vipr1∆Villin (n = 5) mice. c, Intestinal transit time measured in Vipr1fl (n = 6) and Vipr1∆Villin (n = 6) mice. d, scRNA-seq analysis of Cftr and Slc12a2 expression in small intestinal epithelial cells from Vipr1fl and Vipr1∆Villin mice. Data shown are representative of intestinal segments collected from two animals per group. e, Fecal water content measured as wet-to-dry weight in Vipr1fl (n = 6) and Vipr1∆Villin (n = 6) mice. f, Representative plots of flow cytometry gating for small intestinal tuft cells. g, Relative expression of Vipr1 in purified epithelial cells from the duodenum and ileum of Vipr1fl (n = 6) and Vipr1∆VillinERT2 (n = 5) mice following tamoxifen-driven recombination. Expression was assessed using primers targeting exon 2 of the Vipr1 gene. (ac, e, g) Mean and error bars: s.e.m. n represents biologically independent animals. (ac, e) Two-tailed unpaired t test with Welch correction. (d) Two-tailed Wilcoxon rank-sum test. n.d. not detected.

Source data

Extended Data Fig. 5 Epithelial-intrinsic Vipr1 deletion shape intestinal IELs and cell-intrinsic Vipr2 signaling is dispensable to IEL homeostasis.

a, Flow cytometry analysis of small intestinal IELs collected from the duodenum (duo) and ileum of Vipr1fl (n = 6) and Vipr1∆Villin (n = 4) mice after microbiota depletion with antibiotics. b, Flow cytometry analysis of small intestinal IELs collected from the duodenum (duo) and ileum of Vipr1fl (n = 5) and Vipr1∆VillinERT2 (n = 5) after antibiotic treatment. c, d, Flow cytometry analysis of small intestinal IELs collected from the duodenum (duo) and ileum of Vipr2fl (n = 5) and Vipr2∆CD8a (n = 5) mice. e, Relative expression of type 1 (Il15, Il18) and type 2 (Il33, Il25) alarmins in murine organoids stimulated with VIP or vehicle. Vehicle n = 5; VIP n = 5. (ae) Mean and error bars: s.e.m. n represents biologically independent animals. (ad) Ordinary one-way ANOVA with Šídák multiple comparisons test. (e) Two-tailed unpaired t test with Welch correction.

Source data

Extended Data Fig. 6 Neuroepithelial interactions modulate gut defense against bacteria.

(ad) Co-housed Vipr1fl and Vipr1∆Villin mice were orally infected with Salmonella enterica. a, Relative expression of type 1 (Il15, Il18) and type 2 (Il33) alarmins in purified epithelial crypts from the duodenum of Vipr1fl (n = 5) and Vipr1∆Villin (n = 5) mice at day 1 post-infection. b, GFP immunostaining in Salmonella infected mice. Peyer’s Patches (PPs) from the Vipr1fl mice (left) displayed preserved morphological features of the follicle-associated epithelium (arrow) and lack of GFP+ staining, whereas PPs from Vipr1∆Villin mice showed numerous GFP+ Salmonella (brown), erosion and necrosis of the epithelium (asterisk; right panel). DAB counterstained with Harris’ hematoxylin. Original magnification: 40x, Scale bar, 40 µm (first two panels); 100x, Scale bar, 20 µm (magnified panels). c, Histopathology of the small intestine (ileum) at day 1 post-infection. Pathological changes include moderate to severe enteritis characterized by a mononuclear-rich inflammatory infiltrate in the mucosa (black arrows). Necrotic cell debris in the lumen (*) and necrosis of epithelial cells (open arrow); pronounced villous atrophy (open arrowhead) and villous blunting are more prominent in the Vipr1∆Villin mice. Hematoxylin and eosin (H&E). Scale bar, 200 μm (top); 25 μm (bottom). d, Histopathology of the small intestine (jejunum) at day 2 post-infection. Pathological changes in Vipr1∆Villin mice include mild enteritis (black arrows), abundant necrotic cell debris in the lumen (*), and necrosis of epithelial cells (white arrows). Hematoxylin and eosin (H&E). Scale bar, 400 μm (top); 50 μm (bottom). (a) Mean and error bars: s.e.m. n represents biologically independent animals. Two-tailed unpaired t test with Welch correction.

Source data

Extended Data Fig. 7 Epithelial-intrinsic Vipr1 deletion and intestinal immune cells.

a, Flow cytometry analysis of immune cell populations in the small intestinal lamina propria from Vipr1fl and Vipr1∆Villin mice. Absolute numbers of CD4 T cells, TCRαβ CD8 T cells, TCRγδ CD8 T cells, B cells, cDC1, cDC2, macrophages, and neutrophils were determined in Vipr1fl (n = 7) and Vipr1∆Villin (n = 6) mice, while ILC2 and ILC3 were analyzed in Vipr1fl (n = 11) and Vipr1∆Villin (n = 10) mice, and ILC1 and NK cells were assessed in Vipr1fl (n = 4) and Vipr1∆Villin (n = 4) mice. b, Flow cytometry gating strategy for small intestinal lamina propria immune cells. (a) Mean and error bars: s.e.m. n represents biologically independent animals. Two-tailed unpaired t test with Welch correction.

Source data

Extended Data Fig. 8 Epithelial-intrinsic Vipr1 deletion amplifies type 2 responses independently of microbiota.

(ad) Flow cytometry analysis after microbiota depletion. a, Small intestinal PD-1+ ILC2 from the lamina propria of Vipr1fl (n = 6) and Vipr1∆Villin (n = 4) mice. b, Small intestinal eosinophils from the lamina propria of Vipr1fl (n = 6) and Vipr1∆Villin (n = 4). c, Small intestinal PD-1+ ILC2 from the lamina propria of Vipr1fl (n = 5) and Vipr1∆VillinERT2 (n = 5) mice. d, Small intestinal eosinophils from the lamina propria of Vipr1fl (n = 5) and Vipr1∆VillinERT2 (n = 6) mice. (e, f) Vipr2 deletion in IL-5–producing cells. e, Flow cytometry analysis of small intestinal ILC2 from the lamina propria of Vipr2WTIl5 (n = 4) and Vipr2∆Il5 (n = 5) mice. f, Flow cytometry analysis of cytokine production by small intestinal ILC2 from the lamina propria of Vipr2WTIl5 (n = 4) and Vipr2∆Il5 (n = 5) mice. g, Flow cytometry analysis of PD-1+ ILC2 from the mesenteric lymph nodes (mLN) from Vipr1fl (n = 6) and Vipr1∆Villin (n = 6). h, Small intestinal PD-1+ ILC2 and eosinophils isolated from the lamina propria after duodenal chemogenetic inhibition of VIPergic neurons. WT.AAV9-hM4DiGut n = 6; Vip-Cre.AAV9-hM4DiGut n = 5. i, Representative images of PAS staining in the ileum of Rag1−/−.Vipr1fl and Rag1−/−.Vipr1∆VillinERT2 mice. Periodic acid-Schiff (PAS). Scale bar, 200 μm (top panels) and 20 μm (bottom panels). j, Small intestinal PD-1+ ILC2 isolated from the lamina propria of Rag1−/−.Vipr1fl (n = 5) and Rag1−/−.Vipr1∆VillinERT2 (n = 4) mice after antibiotic treatment. k, Small intestinal eosinophils isolated from the lamina propria of Rag1−/−.Vipr1fl (n = 5) and Rag1−/−.Vipr1∆VillinERT2 (n = 4) mice after antibiotic treatment. (ah, j, k) Mean and error bars: s.e.m. n represents biologically independent animals. (a, b) Two-tailed unpaired Mann–Whitney U-test. (cg, j, k) Two-tailed unpaired t test with Welch correction. (h) Ordinary one-way ANOVA with Šídák multiple comparisons test.

Source data

Extended Data Fig. 9 Neuroepithelial interactions modulate gut defense against worm infections.

(a, b) Co-housed Vipr1fl and Vipr1∆Villin mice were infected with Nippostrongylus brasiliensis. a, Relative expression of type 1 (Il15, Il18) and type 2 (Il33) alarmins in purified epithelial crypts from the duodenum of Vipr1fl (n = 6) and Vipr1∆Villin (n = 5) mice at day 5 post-infection. b, Representative H&E images from the duodenum and ileum of the Vipr1fl and Vipr1∆Villin mice showing a mild increase in inflammatory cell infiltration in the mucosa of some villi (asterisks), predominantly composed of mononuclear cells. Hematoxylin and eosin (H&E). Scale bar, 200 μm (top panels) and 50 μm (bottom panels). (a) Mean and error bars: s.e.m. n represents biologically independent animals. Two-tailed unpaired Mann-Whitney U test.

Source data

Supplementary information

Supplementary Information

Unprocessed PCR gel from Extended Data Fig. 3b.

Reporting Summary

Source data

Source Data Fig. 1

Source Data Fig. 1.

Source Data Fig. 2

Source Data Fig. 2.

Source Data Fig. 3

Source Data Fig. 3.

Source Data Fig. 4

Source Data Fig. 4.

Source Data Fig. 5

Source Data Fig. 5.

Source Data Fig. 6

Source Data Fig. 6.

Source Data Fig. 7

Source Data Fig. 7.

Source Data Extended Data Fig. 1

Source Data Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Source Data Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Source Data Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source Data Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Source Data Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Source Data Extended Data Fig. 6.

Source Data Extended Data Fig. 7

Source Data Extended Data Fig. 7.

Source Data Extended Data Fig. 8

Source Data Extended Data Fig. 8.

Source Data Extended Data Fig. 9

Source Data Extended Data Fig. 9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirzgalska, R.M., Henriques-Alves, B., Raposo, B. et al. Neuroepithelial VIP–VIPR1 interactions differentially control enteric type 1 and type 2 immunity. Nat Immunol 26, 2244–2255 (2025). https://doi.org/10.1038/s41590-025-02326-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-025-02326-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing