Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determining the value of genomics in healthcare

Abstract

As genomic sequencing transitions into mainstream healthcare, critically appraising its value is key to informing evidence-based policy, practice and implementation strategies. Assessing the value of genomics is challenging, as traditional evaluation methods and frameworks do not capture many of the outcomes of genomics. This includes the personal value that genomic information provides individuals and family members, and the potential to reuse sequencing data to improve clinical care and drive research. Evaluation is hampered by lack of standardized outcome measures, small sample sizes, and uncertainties arising from the evolving nature of the technology, its applications and associated costs. Complex health system factors further influence real-world utilization and the value of genomic technologies and services within resource-constrained settings. In this Review, we discuss the need for robust yet agile approaches to evaluating genomic technologies that are dynamically informed by real-world data, and we provide examples of emerging methods and best practices. We emphasize the need for a whole-of-system approach and the need to further advance evaluation and implementation methods, to support health systems to sustainably and equitably integrate genomics into clinical care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Valuing the outcomes of genomics using stated preference methods.

Similar content being viewed by others

References

  1. Stark, Z. et al. Integrating genomics into healthcare: a global responsibility. Am. J. Hum. Genet 104, 13–20 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sheikh Hassani, M. et al. Virtual gene panels have a superior diagnostic yield for inherited rare diseases relative to static panels. Clin. Chem. 71, 169–184 (2025).

    CAS  PubMed  Google Scholar 

  3. Wojcik, M. H. et al. Genome sequencing for diagnosing rare diseases. N. Engl. J. Med. 390, 1985–1997 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dai, P. et al. Recommendations for next generation sequencing data reanalysis of unsolved cases with suspected Mendelian disorders: a systematic review and meta-analysis. Genet. Med. 24, 1618–1629 (2022).

    CAS  PubMed  Google Scholar 

  5. Martyn, M. et al. Offering complex genomic screening in acute pediatric settings: Family decision-making and outcomes. Genet. Med. 27, 101327 (2024).

    PubMed  Google Scholar 

  6. Leong, I. U. S. et al. Large-scale pharmacogenomics analysis of patients with cancer within the 100,000 Genomes Project combining whole-genome sequencing and medical records to inform clinical practice. J. Clin. Oncol. 43, 682–693 (2025).

    PubMed  Google Scholar 

  7. Chen, Y. et al. De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome. Nature 632, 832–840 (2024).

  8. Clark, M. M. et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom. Med. 3, 16 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Kohler, J. N., Turbitt, E. & Biesecker, B. B. Personal utility in genomic testing: a systematic literature review. Eur. J. Hum. Genet 25, 662–668 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Best, S. et al. Clinical genomic testing: what matters to key stakeholders?. Eur. J. Hum. Genet. 28, 866–873 (2020).

    PubMed  PubMed Central  Google Scholar 

  11. Pollard, S. et al. Toward the diagnosis of rare childhood genetic diseases: what do parents value most?. Eur. J. Hum. Genet. 29, 1491–1501 (2021).

    PubMed  PubMed Central  Google Scholar 

  12. Smith, H. S. et al. Conceptualization of utility in translational clinical genomics research. Am. J. Hum. Genet. 108, 2027–2036 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, H. S. et al. Key drivers of family-level utility of pediatric genomic sequencing: a qualitative analysis to support preference research. Eur. J. Hum. Genet. 31, 445–452 (2023).

    PubMed  Google Scholar 

  14. ACMG Board of Directors. Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. Genet. Med. 17, 505–507 (2015).

    Google Scholar 

  15. Norris, S., Belcher, A., Howard, K. & Ward, R. L. Evaluating genetic and genomic tests for heritable conditions in Australia: lessons learnt from health technology assessments. J. Community Genet. 13, 503–522 (2022).

    PubMed  Google Scholar 

  16. Ellard, S. et al. Rare disease genomic testing in the UK and Ireland: promoting timely and equitable access. J. Med. Genet. 61, 1103–1112 (2024).

    CAS  PubMed  Google Scholar 

  17. Expert Meeting on Accelerating Access to Human Genomics for Public Health Participants. Accelerating access to human genomics for public health: perspectives from the Western Pacific region. Lancet Reg. Health West Pac. 53, 101265 (2024).

    Google Scholar 

  18. Wu, Y. et al. Parental health spillover effects of paediatric rare genetic conditions. Qual. Life Res. 29, 2445–2454 (2020).

    PubMed  Google Scholar 

  19. National Institute for Health and Care Excellence. Modular update to NICE manuals: health inequalities. https://www.nice.org.uk/process/pmg36/documents/supporting-documentation-3 (2025).

  20. Hayeems, R. Z. et al. Clinical utility of genomic sequencing: a measurement toolkit. NPJ Genom. Med. 5, 56 (2020).

    PubMed  PubMed Central  Google Scholar 

  21. Mallett, A., Stark, Z., Fehlberg, Z., Best, S. & Goranitis, I. Determining the utility of diagnostic genomics: a conceptual framework. Hum. Genomics 17, 75 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chung, C. C. Y., Chu, A. T .W. & Chung, B. H. Y. A roadmap for genome projects to foster psychosocial and economic evidence to further policy and practice. Commun. Med. 5, 198 (2025).

  23. Hartley, T. et al. Evaluation of the diagnostic accuracy of exome sequencing and its impact on diagnostic thinking for patients with rare disease in a publicly funded health care system: a prospective cohort study. Genet. Med. 26, 101012 (2024).

    CAS  PubMed  Google Scholar 

  24. Australian Genomics Health Alliance Acute Care Flagship; Lunke, S. et al. Feasibility of ultra-rapid exome sequencing in critically ill infants and children with suspected monogenic conditions in the Australian Public Health Care System. JAMA 323, 2503–2511 (2020).

    Google Scholar 

  25. Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimmock, D. et al. Project Baby Bear: rapid precision care incorporating rWGS in 5 California children’s hospitals demonstrates improved clinical outcomes and reduced costs of care. Am. J. Hum. Genet. 108, 1231–1238 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Grant, P. E., Pampaka, M., Payne, K., Clarke, A. & McAllister, M. Developing a short-form of the Genetic Counselling Outcome Scale: The Genomics Outcome Scale. Eur. J. Med Genet. 62, 324–334 (2019).

    PubMed  Google Scholar 

  28. Stark, Z. et al. Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectiveness. Genet. Med. 21, 173–180 (2019).

    CAS  PubMed  Google Scholar 

  29. Khoury, M. J. et al. Health equity in the implementation of genomics and precision medicine: a public health imperative. Genet. Med. 24, 1630–1639 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McAllister, M., Wood, A. M., Dunn, G., Shiloh, S. & Todd, C. The Genetic Counseling Outcome Scale: a new patient-reported outcome measure for clinical genetics services. Clin. Genet. 79, 413–424 (2011).

    CAS  PubMed  Google Scholar 

  31. Smith, H. S. et al. Clinical application of genome and exome sequencing as a diagnostic tool for pediatric patients: a scoping review of the literature. Genet. Med. 21, 3–16 (2019).

    CAS  PubMed  Google Scholar 

  32. Pan, T., Wu, Y., Buchanan, J. & Goranitis, I. QALYs and rare diseases: exploring the responsiveness of SF-6D, EQ-5D-5L and AQoL-8D following genomic testing for childhood and adult-onset rare genetic conditions in Australia. Health Qual. Life Outcomes 21, 132 (2023).

    PubMed  PubMed Central  Google Scholar 

  33. Hayeems, R. Z. et al. The development of the Clinician-reported Genetic testing Utility InDEx (C-GUIDE): a novel strategy for measuring the clinical utility of genetic testing. Genet. Med. 22, 95–101 (2020).

    CAS  PubMed  Google Scholar 

  34. Hayeems, R. Z. et al. The Clinician-reported Genetic testing Utility InDEx (C-GUIDE): preliminary evidence of validity and reliability. Genet. Med. 24, 430–438 (2022).

    CAS  PubMed  Google Scholar 

  35. Hayeems, R. Z. et al. Assessing the performance of the Clinician-reported Genetic Testing Utility InDEx (C-GUIDE): further evidence of inter-rater reliability. Clin. Ther. 45, 729–735 (2023).

    PubMed  Google Scholar 

  36. Hayeems, R. Z. et al. Applying the Clinician-reported Genetic testing Utility InDEx (C-GUIDE) to genome sequencing: further evidence of validity. Eur. J. Hum. Genet. 30, 1423–1431 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayeems, R. Z. et al. The Clinician-reported Genetic Testing Utility InDEx (C-GUIDE) for Prenatal Care: initial evidence of content and construct validity. Genet. Med. 27, 101306 (2025).

    CAS  PubMed  Google Scholar 

  38. Dolman, L. I. et al. The Clinician-reported Genetic Testing Utility InDEx for Neonatal Intensive Care (C-GUIDE NICU): quantifying genome-wide sequencing utility in the NICU. Genet. Med. 27, 101503 (2025).

    CAS  PubMed  Google Scholar 

  39. Smith, H. S. et al. Perceived utility of genomic sequencing: qualitative analysis and synthesis of a conceptual model to inform patient-centered instrument development. Patient 15, 317–328 (2022).

    PubMed  Google Scholar 

  40. Smith, H. S. et al. Measuring perceived utility of genomic sequencing: Development and validation of the GENEtic Utility (GENE-U) scale for pediatric diagnostic testing. Genet. Med. 26, 101146 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith, H. S. et al. Measuring perceived utility of genomic sequencing: Development and validation of the GENEtic Utility (GENE-U) scale for adult screening. Genet. Med. 26, 101240 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Turbitt, E. et al. The PrU: development and validation of a measure to assess personal utility of genomic results. Genet. Med. 25, 100356 (2022).

    PubMed  Google Scholar 

  43. Turbitt, E. et al. The Parent PrU: a measure to assess personal utility of pediatric genomic results. Genet. Med. 26, 100994 (2024).

    CAS  PubMed  Google Scholar 

  44. Fehlberg, Z., Goranitis, I., Mallett, A. J., Stark, Z. & Best, S. Determining priority indicators of utility for genomic testing in rare disease: a Delphi study. Genet. Med. 26, 101116 (2024).

    CAS  PubMed  Google Scholar 

  45. Goranitis, I. et al. A standardized measurement and valuation scale of genomic utility for policy decisions: The GUV Scale. Value Health 28, 184–190 (2025).

    PubMed  Google Scholar 

  46. Phillips, K. A. et al. Methodological issues in assessing the economic value of next-generation sequencing tests: many challenges and not enough solutions. Value Health 21, 1033–1042 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Grosse, S. D. & Khoury, M. J. What is the clinical utility of genetic testing?. Genet. Med. 8, 448–450 (2006).

    PubMed  Google Scholar 

  48. Grosse, S. D., Wordsworth, S. & Payne, K. Economic methods for valuing the outcomes of genetic testing: beyond cost-effectiveness analysis. Genet. Med. 10, 648–654 (2008).

    PubMed  Google Scholar 

  49. Regier, D. A., Friedman, J. M., Makela, N., Ryan, M. & Marra, C. A. Valuing the benefit of diagnostic testing for genetic causes of idiopathic developmental disability: willingness to pay from families of affected children. Clin. Genet. 75, 514–521 (2009).

    CAS  PubMed  Google Scholar 

  50. Regier, D. A., Ryan, M., Phimister, E. & Marra, C. A. Bayesian and classical estimation of mixed logit: an application to genetic testing. J. Health Econ. 28, 598–610 (2009).

    PubMed  Google Scholar 

  51. Ho, M. et al. A framework for incorporating patient preferences regarding benefits and risks into regulatory assessment of medical technologies. Value Health 19, 746–750 (2016).

    PubMed  Google Scholar 

  52. Bridges, J. F. P. et al. A roadmap for increasing the usefulness and impact of patient-preference studies in decision making in health: a good practices report of an ISPOR task force. Value Health 26, 153–162 (2023).

    PubMed  Google Scholar 

  53. Smith, H. S. et al. Approaches to incorporation of preferences into health economic models of genomic medicine: a critical interpretive synthesis and conceptual framework. Appl. Health Econ. Health Policy 23, 337–358 (2025).

  54. Strauss, K. A. et al. Genomic diagnostics within a medically underserved population: efficacy and implications. Genet. Med. 20, 31–41 (2018).

    PubMed  Google Scholar 

  55. Marshall, D. A. et al. The value of diagnostic testing for parents of children with rare genetic diseases. Genet. Med. 21, 2798–2806 (2019).

    PubMed  Google Scholar 

  56. Meng, Y., Clarke, P. M. & Goranitis, I. The value of genomic testing: a contingent valuation across six child- and adult-onset genetic conditions. Pharmacoeconomics 40, 215–223 (2022).

    PubMed  Google Scholar 

  57. Goranitis, I., Best, S., Christodoulou, J., Stark, Z. & Boughtwood, T. The personal utility and uptake of genomic sequencing in pediatric and adult conditions: eliciting societal preferences with three discrete choice experiments. Genet. Med. 22, 1311–1319 (2020).

    PubMed  PubMed Central  Google Scholar 

  58. Goranitis, I., Best, S., Stark, Z., Boughtwood, T. & Christodoulou, J. The value of genomic sequencing in complex pediatric neurological disorders: a discrete choice experiment. Genet. Med. 23, 155–162 (2021).

    PubMed  Google Scholar 

  59. Goranitis, I., Best, S., Christodoulou, J., Boughtwood, T. & Stark, Z. Preferences and values for rapid genomic testing in critically ill infants and children: a discrete choice experiment. Eur. J. Hum. Genet. 29, 1645–1653 (2021).

    PubMed  PubMed Central  Google Scholar 

  60. Meng, Y. et al. The value of genomic testing in severe childhood speech disorders. Eur. J. Hum. Genet. 32, 440–447 (2024).

    PubMed  PubMed Central  Google Scholar 

  61. Regier, D. A., Weymann, D., Buchanan, J., Marshall, D. A. & Wordsworth, S. Valuation of health and nonhealth outcomes from next-generation sequencing: approaches, challenges, and solutions. Value Health 21, 1043–1047 (2018).

    PubMed  Google Scholar 

  62. Peters, R. et al. Public preferences for the value and implementation of genomic newborn screening: Insights from two discrete choice experiments in Australia. Am. J. Hum. Genet. 112, 1515–1527 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Regier, D. A., Friedman, J. M. & Marra, C. A. Value for money? Array genomic hybridization for diagnostic testing for genetic causes of intellectual disability. Am. J. Hum. Genet. 86, 765–772 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Goranitis, I. et al. Is faster better? An economic evaluation of rapid and ultra-rapid genomic testing in critically ill infants and children. Genet. Med. 24, 1037–1044 (2022).

    CAS  PubMed  Google Scholar 

  65. Wu, Y. et al. Genomic sequencing for the diagnosis of childhood mitochondrial disorders: a health economic evaluation. Eur. J. Hum. Genet. 30, 577–586 (2022).

    PubMed  Google Scholar 

  66. Downie, L. et al. Exome sequencing for isolated congenital hearing loss: a cost-effectiveness analysis. Laryngoscope 131, E2371–E2377 (2021).

    CAS  PubMed  Google Scholar 

  67. Jayasinghe, K. et al. Cost-effectiveness of targeted exome analysis as a diagnostic test in glomerular diseases. Kidney Int. Rep. 6, 2850–2861 (2021).

    PubMed  PubMed Central  Google Scholar 

  68. O’Rourke, B., Oortwijn, W. Schuller, T. & International Joint Task Group The new definition of health technology assessment:a milestone in international collaboration. Int. J. Technol. Assess. Health Care 36, 187–190 (2020).

    PubMed  Google Scholar 

  69. Group, N. I. S. et al. Effect of whole-genome sequencing on the clinical management of acutely ill infants with suspected genetic disease: a randomized clinical trial. JAMA Pediatr. 175, 1218–1226 (2021).

    Google Scholar 

  70. Kingsmore, S. F. et al. A randomized, controlled trial of the analytic and diagnostic performance of singleton and trio, rapid genome and exome sequencing in ill infants. Am. J. Hum. Genet. 105, 719–733 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dimmock, D. P. et al. An RCT of rapid genomic sequencing among seriously ill infants results in high clinical utility, changes in management, and low perceived harm. Am. J. Hum. Genet. 107, 942–952 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Petrikin, J. E. et al. The NSIGHT1-randomized controlled trial: rapid whole-genome sequencing for accelerated etiologic diagnosis in critically ill infants. NPJ Genom. Med. 3, 6 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Le Tourneau, C. et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 16, 1324–1334 (2015).

    PubMed  Google Scholar 

  74. Ceyhan-Birsoy, O. et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq Project. Am. J. Hum. Genet. 104, 76–93 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gibbs, S. N. et al. Comprehensive review on the clinical impact of next-generation sequencing tests for the management of advanced cancer. JCO Precis. Oncol. 7, e2200715 (2023).

    PubMed  PubMed Central  Google Scholar 

  76. Stark, Z. et al. Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement. Genet. Med. 19, 867–874 (2017).

    PubMed  Google Scholar 

  77. Tan, T. Y. et al. A head-to-head evaluation of the diagnostic efficacy and costs of trio versus singleton exome sequencing analysis. Eur. J. Hum. Genet. 27, 1791–1799 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Tuxen, I. V. et al. Copenhagen Prospective Personalized Oncology (CoPPO)-clinical utility of using molecular profiling to select patients to phase I trials. Clin. Cancer Res. 25, 1239–1247 (2019).

    PubMed  Google Scholar 

  79. Von Hoff, D. D. et al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J. Clin. Oncol. 28, 4877–4883 (2010).

    Google Scholar 

  80. Weymann, D. et al. Clinical and cost outcomes following genomics-informed treatment for advanced cancers. Cancer Med. 10, 5131–5140 (2021).

    PubMed  PubMed Central  Google Scholar 

  81. Vissers, L. et al. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet. Med. 19, 1055–1063 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Yeung, A. et al. A cost-effectiveness analysis of genomic sequencing in a prospective versus historical cohort of complex pediatric patients. Genet. Med. 22, 1986–1993 (2020).

    PubMed  Google Scholar 

  83. Weymann, D. et al. Early-stage economic analysis of research-based comprehensive genomic sequencing for advanced cancer care. J. Community Genet. 13, 523–538 (2022).

    PubMed  Google Scholar 

  84. Hernando-Calvo, A. et al. Impact on costs and outcomes of multi-gene panel testing for advanced solid malignancies: a cost-consequence analysis using linked administrative data. EClinicalMedicine 69, 102443 (2024).

    PubMed  PubMed Central  Google Scholar 

  85. Krebs, E. et al. Real-world cost-effectiveness of multi-gene panel sequencing to inform therapeutic decisions for advanced non-small cell lung cancer: a population-based study. Lancet Reg. Health Am. 40, 100936 (2024).

    PubMed  PubMed Central  Google Scholar 

  86. Chung, C. C. Y. et al. Meta-analysis of the diagnostic and clinical utility of exome and genome sequencing in pediatric and adult patients with rare diseases across diverse populations. Genet. Med. 25, 100896 (2023).

    CAS  PubMed  Google Scholar 

  87. Shickh, S., Mighton, C., Uleryk, E., Pechlivanoglou, P. & Bombard, Y. The clinical utility of exome and genome sequencing across clinical indications: a systematic review. Hum. Genet. 140, 1403–1416 (2021).

    PubMed  Google Scholar 

  88. Kobayashi, E. S. et al. Long term follow up of children who received rapid genomic sequencing. Genet. Med. 27, 101403 (2025).

  89. Payne, K., Gavan, S. P., Wright, S. J. & Thompson, A. J. Cost-effectiveness analyses of genetic and genomic diagnostic tests. Nat. Rev. Genet. 19, 235–246 (2018).

    CAS  PubMed  Google Scholar 

  90. Schwarze, K., Buchanan, J., Taylor, J. C. & Wordsworth, S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. 20, 1122–1130 (2018).

    PubMed  Google Scholar 

  91. Grosse, S. D. & Gudgeon, J. M. Cost or price of sequencing? Implications for economic evaluations in genomic medicine. Genet. Med. 23, 1833–1835 (2021).

    PubMed  PubMed Central  Google Scholar 

  92. Santos Gonzalez, F. et al. Microcosting diagnostic genomic sequencing: a systematic review. Genet. Med. 25, 100829 (2023).

    CAS  PubMed  Google Scholar 

  93. Fahr, P., Buchanan, J. & Wordsworth, S. A review of health economic studies comparing traditional and massively parallel sequencing diagnostic pathways for suspected genetic disorders. Pharmacoeconomics 38, 143–158 (2020).

    PubMed  Google Scholar 

  94. Santos Gonzalez, F. et al. Microcosting genomics: challenges and opportunities. Genet. Med. 27, 101310 (2025).

    CAS  PubMed  Google Scholar 

  95. Bourke, M. et al. The cost-effectiveness of genomic medicine in cancer control: a systematic literature review. Appl. Health Econ. Health Policy 23, 359–393 (2025).

  96. Regier, D. A. et al. A perspective on life-cycle health technology assessment and real-world evidence for precision oncology in Canada. NPJ Precis. Oncol. 6, 76 (2022).

    PubMed  PubMed Central  Google Scholar 

  97. Schmidtke, J. & Cassiman, J. J. The EuroGentest clinical utility gene cards. Eur. J. Hum. Genet. 18, 1068 (2010).

    PubMed  Google Scholar 

  98. Burke, W. et al. Genetic test evaluation: information needs of clinicians, policy makers, and the public. Am. J. Epidemiol. 156, 311–318 (2002).

    PubMed  Google Scholar 

  99. Schilling, C. et al. Utilisation of subsidised genetic and genomic testing in a publicly funded healthcare system 2014-2023. Eur. J. Hum. Genet. 33, 1044–1050 (2025).

  100. Mordaunt, D. A., Dalziel, K., Goranitis, I. & Stark, Z. Uptake of funded genomic testing for syndromic and non-syndromic intellectual disability in Australia. Eur. J. Hum. Genet 31, 977–979 (2023).

    PubMed  PubMed Central  Google Scholar 

  101. Douglas, M. P., Parker, S. L., Trosman, J. R., Slavotinek, A. M. & Phillips, K. A. Private payer coverage policies for exome sequencing (ES) in pediatric patients: trends over time and analysis of evidence cited. Genet. Med. 21, 152–160 (2019).

    PubMed  Google Scholar 

  102. Trosman, J. R. et al. Perspectives of US private payers on insurance coverage for pediatric and prenatal exome sequencing: results of a study from the Program in Prenatal and Pediatric Genomic Sequencing (P3EGS). Genet. Med. 22, 283–291 (2020).

    CAS  PubMed  Google Scholar 

  103. Smith, H. S. et al. Outcomes of prior authorization requests for genetic testing in outpatient pediatric genetics clinics. Genet. Med. 23, 950–955 (2021).

    PubMed  Google Scholar 

  104. Zion, T. N. et al. Insurance denials and diagnostic rates in a pediatric genomic research cohort. Genet. Med. 25, 100020 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lu, C. Y. et al. Insurance coverage policies for pharmacogenomic and multi-gene testing for cancer. J. Pers. Med. 8, 19 (2018).

  106. Beinfeld, M. T., Rucker, J. A., Jenkins, N. B., de Breed, L. A. & Chambers, J. D. Variation in Medicaid and commercial coverage of cell and gene therapies. Health Policy Open 5, 100103 (2023).

    PubMed  PubMed Central  Google Scholar 

  107. Phillips, K. A. et al. US private payers’ perspectives on insurance coverage for genome sequencing versus exome sequencing: a study by the Clinical Sequencing Evidence-Generating Research Consortium (CSER). Genet. Med. 24, 238–244 (2022).

    CAS  PubMed  Google Scholar 

  108. Smith, H. S., Sherman, M. & Cardeiro, D. Conversations with the editors: stewardship in genomic medicine-insights from health care payers at the forefront of clinical innovation and partnerships. Clin. Ther. 45, 690–694 (2023).

    PubMed  Google Scholar 

  109. Wiedower, J. et al. Payer perspectives on genomic testing in the United States: a systematic literature review. Genet. Med. 27, 101329 (2025).

    CAS  PubMed  Google Scholar 

  110. Braithwaite, J., Churruca, K., Long, J. C., Ellis, L. A. & Herkes, J. When complexity science meets implementation science: a theoretical and empirical analysis of systems change. BMC Med. 16, 63 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. Zebrowski, A. M. et al. Qualitative study of system-level factors related to genomic implementation. Genet. Med. 21, 1534–1540 (2019).

    PubMed  Google Scholar 

  112. Best, S., Long, J. C., Gaff, C., Braithwaite, J. & Taylor, N. Investigating the adoption of clinical genomics in Australia. An Implementation Science case study. Genes 12, 317 (2021).

  113. Gaff, C. L. et al. Preparing for genomic medicine: a real world demonstration of health system change. NPJ Genom. Med. 2, 16 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Best, S., Long, J. C., Gaff, C., Braithwaite, J. & Taylor, N. Organizational perspectives on implementing complex health interventions: clinical genomics in Australia. J. Health Organ. Manag. 35, 825–845 (2021).

    Google Scholar 

  115. Stark, Z. et al. Australian genomics: outcomes of a 5-year national program to accelerate the integration of genomics in healthcare. Am. J. Hum. Genet. 110, 419–426 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Braithwaite, J., Glasziou, P. & Westbrook, J. The three numbers you need to know about healthcare: the 60-30-10 challenge. BMC Med. 18, 102 (2020).

    PubMed  PubMed Central  Google Scholar 

  117. Khorshidi, H. A., Marshall, D., Goranitis, I., Schroeder, B. & IJzerman, M. System dynamics simulation for evaluating implementation strategies of genomic sequencing: tutorial and conceptual model. Expert Rev. Pharmacoecon. Outcomes Res. 24, 37–47 (2024).

    PubMed  Google Scholar 

  118. Investigators, G. P. P. et al. 100,000 genomes pilot on rare-disease diagnosis in health care - preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Google Scholar 

  119. Sosinsky, A. et al. Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme. Nat. Med. 30, 279–289 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Howley, C. et al. The expanding global genomics landscape: converging priorities from national genomics programs. Am. J. Hum. Genet. 112, 751–763 (2025).

  121. Stark, Z. et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet. Med. 18, 1090–1096 (2016).

    CAS  PubMed  Google Scholar 

  122. Lionel, A. C. et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet. Med. 20, 435–443 (2018).

    CAS  PubMed  Google Scholar 

  123. Regier, D. A. et al. Real-world diagnostic outcomes and cost-effectiveness of genome-wide sequencing for developmental and seizure disorders: evidence from Canada. Genet. Med. 26, 101069 (2024).

    CAS  PubMed  Google Scholar 

  124. Dragojlovic, N. et al. The composition and capacity of the clinical genetics workforce in high-income countries: a scoping review. Genet. Med. 22, 1437–1449 (2020).

    PubMed  Google Scholar 

  125. Jenkins, B. D. et al. The 2019 US medical genetics workforce: a focus on clinical genetics. Genet. Med. 23, 1458–1464 (2021).

    PubMed  PubMed Central  Google Scholar 

  126. Jayasinghe, K. et al. Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet. Med. 23, 183–191 (2021).

    PubMed  Google Scholar 

  127. Yanes, T. et al. Evaluation and pilot testing of a multidisciplinary model of care to mainstream genomic testing for paediatric inborn errors of immunity. Eur. J. Hum. Genet 31, 1125–1132 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ma, A. et al. Genomic multidisciplinary teams: a model for navigating genetic mainstreaming and precision medicine. J. Paediatr. Child Health 60, 118–124 (2024).

    PubMed  Google Scholar 

  129. McCorkell, G. et al. A national education program for rapid genomics in pediatric acute care: Building workforce confidence, competence, and capability. Genet. Med. 26, 101224 (2024).

    CAS  PubMed  Google Scholar 

  130. Nisselle, A., Terrill, B., Janinski, M., Metcalfe, S. & Gaff, C. Ensuring best practice in genomics education: a scoping review of genomics education needs assessments and evaluations. Am. J. Hum. Genet. 111, 1508–1523 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nisselle, A. et al. Ensuring best practice in genomics education: a theory- and empirically informed evaluation framework. Am. J. Hum. Genet. 111, 1497–1507 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nightingale, K. P. et al. Evaluation of the Master’s in Genomic Medicine framework: a national, multiprofessional program to educate health care professionals in NHS England. Genet. Med. 27, 101277 (2025).

    CAS  PubMed  Google Scholar 

  133. Pichini, A. & Bishop, M. A nationally agreed cross-professional competency framework to facilitate genomic testing. Genet. Med. 24, 1743–1752 (2022).

    CAS  PubMed  Google Scholar 

  134. Pichini, A., Tatton-Brown, K., Thomas, E. & Bishop, M. A cross-professional competency framework for communicating genomic results. J. Genet. Couns. 33, 222–231 (2024).

    PubMed  Google Scholar 

  135. Karthikeyan, A., McKee, S. & McKay, G. J. Integration of genomic medicine to mainstream patient care within the UK National Health Service. Ulster Med. J. 93, 111–118 (2024).

    PubMed  PubMed Central  Google Scholar 

  136. Berkman, J. et al. Mainstreaming cancer genomic testing: a scoping review of the acceptability, efficacy, and impact. Clin. Genet. 107, 123–135 (2025).

    CAS  PubMed  Google Scholar 

  137. Mackley, M. P. et al. Mainstreaming of clinical genetic testing: a conceptual framework. Genet. Med. 27, 101465 (2025).

    CAS  PubMed  Google Scholar 

  138. Mordaunt, D. A. et al. The cost of proband and trio exome and genome analysis in rare disease: a micro-costing study. Genet. Med. 26, 101058 (2024).

    CAS  PubMed  Google Scholar 

  139. Best, S. et al. Teamwork in clinical genomics: a dynamic sociotechnical healthcare setting. J. Eval. Clin. Pract. 27, 1369–1380 (2021).

    PubMed  Google Scholar 

  140. Best, S. et al. The leadership behaviors needed to implement clinical genomics at scale: a qualitative study. Genet. Med. 22, 1384–1390 (2020).

    PubMed  PubMed Central  Google Scholar 

  141. Friedrich, B. et al. A very big challenge”: a qualitative study to explore the early barriers and enablers to implementing a national genomic medicine service in England. Front. Genet. 14, 1282034 (2023).

    PubMed  Google Scholar 

  142. Kirk, E. P. et al. Nationwide, couple-based genetic carrier screening. N. Engl. J. Med. 391, 1877–1889 (2024).

    CAS  PubMed  Google Scholar 

  143. Casalino, S. et al. Genome screening, reporting, and genetic counseling for healthy populations. Hum. Genet. 142, 181–192 (2023).

    PubMed  Google Scholar 

  144. Stark, Z. & Scott, R. H. Genomic newborn screening for rare diseases. Nat. Rev. Genet. 24, 755–766 (2023).

    CAS  PubMed  Google Scholar 

  145. McDermott, J. H., Tsakiroglou, M., Newman, W. G. & Pirmohamed, M. Pharmacogenomics in the UK National Health Service: progress towards implementation. Br. J. Clin. Pharmacol. 91, 2241–2250 (2025).

  146. Lennon, N. J. et al. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat. Med. 30, 480–487 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Rehm, H. L. et al. ClinGen–the Clinical Genome Resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Rehm, H. L., Harrison, S. M. & Martin, C. L. ClinVar is a critical resource to advance variant interpretation. Oncologist 22, 1562 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Tudini, E. et al. Shariant platform: enabling evidence sharing across Australian clinical genetic-testing laboratories to support variant interpretation. Am. J. Hum. Genet 109, 1960–1973 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Stark, Z. et al. Scaling national and international improvement in virtual gene panel curation via a collaborative approach to discordance resolution. Am. J. Hum. Genet. 108, 1551–1557 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. DiStefano, M. T. et al. The Gene Curation Coalition: a global effort to harmonize gene-disease evidence resources. Genet. Med. 24, 1732–1742 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Stark, Z. et al. A call to action to scale up research and clinical genomic data sharing. Nat. Rev. Genet. 26, 141–147 (2025).

    CAS  PubMed  Google Scholar 

  153. Rehm, H. L. et al. GA4GH: international policies and standards for data sharing across genomic research and healthcare. Cell. Genom. 1, 100029 (2021).

  154. Roberts, M. C., Kennedy, A. E., Chambers, D. A. & Khoury, M. J. The current state of implementation science in genomic medicine: opportunities for improvement. Genet. Med. 19, 858–863 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Chambers, D. A., Feero, W. G. & Khoury, M. J. Convergence of implementation science, precision medicine, and the learning health care system: a new model for biomedical research. JAMA 315, 1941–1942 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Moullin, J. C. et al. Ten recommendations for using implementation frameworks in research and practice. Implement. Sci. Commun. 1, 42 (2020).

    PubMed  PubMed Central  Google Scholar 

  157. Brown, H. L., Sherburn, I. A., Gaff, C., Taylor, N. & Best, S. Structured approaches to implementation of clinical genomics: a scoping review. Genet Med 24, 1415–1424 (2022).

    CAS  PubMed  Google Scholar 

  158. Curran, G. M., Bauer, M., Mittman, B., Pyne, J. M. & Stetler, C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med. Care 50, 217–226 (2012).

    PubMed  PubMed Central  Google Scholar 

  159. Taylor, N. et al. Aligning intuition and theory: a novel approach to identifying the determinants of behaviours necessary to support implementation of evidence into practice. Implement. Sci. 18, 29 (2023).

    PubMed  PubMed Central  Google Scholar 

  160. Best, S. et al. Learning from scaling up ultra-rapid genomic testing for critically ill children to a national level. NPJ Genom. Med. 6, 5 (2021).

    PubMed  PubMed Central  Google Scholar 

  161. Cheng, L. et al. Optimising the mainstreaming of renal genomics: Complementing empirical and theoretical strategies for implementation. Eur. J. Hum. Genet. 33, 351–359 (2025).

    PubMed  PubMed Central  Google Scholar 

  162. Best, S. et al. Using a theory informed approach to design, execute, and evaluate implementation strategies to support offering reproductive genetic carrier screening in Australia. BMC Health Serv. Res. 23, 1276 (2023).

    PubMed  PubMed Central  Google Scholar 

  163. Fehlberg, Z. et al. Scaling-up and future sustainability of a national reproductive genetic carrier screening program. NPJ Genom. Med. 8, 18 (2023).

    PubMed  PubMed Central  Google Scholar 

  164. Best, S., Long, J. C., Braithwaite, J. & Taylor, N. Standardizing variation: Scaling up clinical genomics in Australia. Genet. Med. 25, 100109 (2023).

    CAS  PubMed  Google Scholar 

  165. Laskowski, N. M. et al. Variation exists in service delivery: similarities and differences in the provision of a whole genome sequencing service for paediatric rare disease patients in the National Health Service in England. Public Health Genomics 28, 1–18 (2025).

    PubMed  Google Scholar 

  166. Best, S., Vidic, N., An, K., Collins, F. & White, S. M. A systematic review of geographical inequities for accessing clinical genomic and genetic services for non-cancer related rare disease. Eur. J. Hum. Genet. 30, 645–652 (2022).

    PubMed  PubMed Central  Google Scholar 

  167. Casauria, S. et al. Assessing the unmet needs of genomic testing in Australia: a geospatial exploration. Eur. J. Hum. Genet. 33, 496–503 (2024).

  168. Pichler, F. B. et al. An operationalization framework for lifecycle health technology assessment: a Health Technology Assessment International Global Policy Forum Task Force report. Int. J. Technol. Assess. Health Care 40, e45 (2024).

    PubMed  PubMed Central  Google Scholar 

  169. Makady, A., de Boer, A., Hillege, H., Klungel, O. & Goettsch, W. What is real-world data? A review of definitions based on literature and stakeholder interviews. Value Health 20, 858–865 (2017).

    PubMed  Google Scholar 

  170. Sterrantino, A. F. Observational studies: practical tips for avoiding common statistical pitfalls. Lancet Reg. Health Southeast Asia 25, 100415 (2024).

    PubMed  PubMed Central  Google Scholar 

  171. Weymann, D., Krebs, E. & Regier, D. A. Addressing immortal time bias in precision medicine: practical guidance and methods development. Health Serv. Res. 60, e14376 (2025).

    PubMed  Google Scholar 

  172. Hernan, M. A., Sauer, B. C., Hernandez-Diaz, S., Platt, R. & Shrier, I. Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses. J. Clin. Epidemiol. 79, 70–75 (2016).

    PubMed  PubMed Central  Google Scholar 

  173. Pollard, S. et al. Defining a core data set for the economic evaluation of precision oncology. Value Health 25, 1371–1380 (2022).

    PubMed  Google Scholar 

  174. McPhail, M., McCabe, C., Regier, D. A. & Bubela, T. The importance of and challenges with adopting life-cycle regulation and reimbursement in Canada. Health. Policy 17, 81–90 (2022).

    Google Scholar 

  175. Maggio, L. A., Villalba, K., German, D., Kanter, S. L. & Collard, H. R. Defining the learning health care system: an international health system leadership perspective. Acad. Med. 99, 215–220 (2024).

    PubMed  Google Scholar 

  176. Meghea, C. I. et al. An NIH investment in health equity - the economic impact of the Flint Center for Health Equity Solutions. BMC Public Health 21, 1774 (2021).

    PubMed  PubMed Central  Google Scholar 

  177. Hock, D. H. et al. Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases. Genome Med. 17, 58 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Tambuyzer, E. et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 19, 93–111 (2020).

    CAS  PubMed  Google Scholar 

  179. Chung, C. C. Y., Chu, A. T. W. & Chung, B. H. Y. A roadmap for genome projects to foster psychosocial and economic evidence to further policy and practice. Commun. Med. 5, 198 (2025).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilias Goranitis or Zornitza Stark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Elaine Mardis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goranitis, I., Hayeems, R.Z., Smith, H.S. et al. Determining the value of genomics in healthcare. Nat Med 31, 4022–4033 (2025). https://doi.org/10.1038/s41591-025-04061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-025-04061-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing