Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global and regional cancer burden attributable to modifiable risk factors to inform prevention

Abstract

Cancer remains a leading cause of morbidity globally, largely attributable to modifiable risks. We estimated the 2022 global and national cancer burden attributable to 30 such factors, including tobacco smoking, alcohol consumption, high body mass index, insufficient physical activity, smokeless tobacco and areca nut, suboptimal breastfeeding, air pollution, ultraviolet radiation, 9 infectious agents and 13 occupational exposures, to inform prevention efforts. Using GLOBOCAN data for 36 cancer sites in 185 countries, we applied prevalence data from around 2012 to reflect exposure−cancer latency and estimated Levin-based or Miettinen-based population-attributable fractions (PAFs) or direct estimates where applicable. Combined PAFs accounting for overlapping exposures were derived by cancer, sex, country and region. In 2022, an estimated 7.1 million of 18.7 million new cancer cases (37.8%) were attributable to 30 modifiable risk factors—2.7 million (29.7%) in women and 4.3 million (45.4%) in men. The proportion of preventable cancers ranged from 24.6% to 38.2% in women and from 28.1% to 57.2% in men across regions. Smoking (15.1%), infections (10.2%) and alcohol consumption (3.2%) were the leading contributors to cancer burden. Lung, stomach and cervical cancers represented nearly half of preventable cancers. Strengthening efforts to reduce modifiable exposures remains central to global cancer prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global map of cancer burden attributable to risk factors in 2022.
Fig. 2: Global map of leading modifiable cancer risk factors in 2022.
Fig. 3: Cancer cases attributable to modifiable risk factors by world region in 2022.
Fig. 4: Incident cancer cases and modifiable risk-factor-attributable burden by cancer type in 2022.

Data availability

All data used in this analysis are publicly available. GLOBOCAN estimates for cancer incidence data are available from the International Agency for Research on Cancer’s Global Cancer Observatory (https://gco.iarc.fr/today/), and CI5 population-based cancer registry data are available from the International Agency for Research on Cancer’s Cancer Incidence in Five Continents Volume XII: https://ci5.iarc.fr/ci5-xii/. Tobacco smoking prevalence is available on the Institute for Health Metrics and Evaluation Global Burden of Disease Study 2019 Data Input Sources Tool: https://ghdx.healthdata.org/gbd-2019/data-input-sources. Alcohol consumption prevalence data are available on the World Health Organization’s Global Health Observatory: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/average-daily-intake-in-grams-of-alcohol–population-15. High-BMI prevalence data are available on the Noncommunicable Disease Risk Factor Collaboration’s website: https://www.ncdrisc.org/data-downloads-adiposity.html. Insufficient physical activity prevalence data are available on the World Health Organization’s Global Health Observatory: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-insufficient-physical-activity-among-adults-aged-18-years-(crude-estimate)-(-). Suboptimal breastfeeding prevalence data are available on the UNICEF website: https://data.unicef.org/topic/nutrition/breastfeeding/#data. Concentrations of fine particulate matter (PM2.5) are available on the World Health Organization’s Global Health Observatory: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/concentrations-of-fine-particulate-matter-(pm2-5). Prevalence data for occupational exposures are available from the World Health Organization and International Labour Organization’s report: https://www.ilo.org/sites/default/files/wcmsp5/groups/public/@ed_dialogue/@lab_admin/documents/publication/wcms_819788.pdf.

Code availability

A sample code for PAF estimation of high BMI as well as the code used for the combination and harmonization of all PAF files of the individual risk factors are available at https://github.com/hfink1/Causes_of_cancer.git.

References

  1. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    PubMed  Google Scholar 

  2. Tran, K. B. et al. The global burden of cancer attributable to risk factors, 2010−19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 563–591 (2022).

    Article  Google Scholar 

  3. Stein, C. J. & Colditz, G. A. Modifiable risk factors for cancer. Br. J. Cancer 90, 299–303 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goddard, K. A. B. et al. Estimation of cancer deaths averted from prevention, screening, and treatment efforts, 1975−2020. JAMA Oncol. 11, 162–167 (2025).

    Article  PubMed  Google Scholar 

  5. GBD 2023 Cancer Collaborators. The global, regional, and national burden of cancer, 1990−2023, with forecasts to 2050: a systematic analysis for the Global Burden of Disease Study 2023. Lancet 406, 1565−1586 (2025).

  6. de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health 8, e180–e190 (2020).

    Article  PubMed  Google Scholar 

  7. Plummer, M. et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health 4, e609–e616 (2016).

    Article  PubMed  Google Scholar 

  8. Whiteman, D. C. & Wilson, L. F. The fractions of cancer attributable to modifiable factors: a global review. Cancer Epidemiol. 44, 203–221 (2016).

    Article  PubMed  Google Scholar 

  9. Azevedo, E. S. G. et al. The fraction of cancer attributable to ways of life, infections, occupation, and environmental agents in Brazil in 2020. PLoS ONE 11, e0148761 (2016).

    Article  Google Scholar 

  10. Brown, K. F. et al. The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. Br. J. Cancer 118, 1130–1141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Islami, F. et al. Cancer deaths and cases attributable to lifestyle factors and infections in China, 2013. Ann. Oncol. 28, 2567–2574 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Islami, F. et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States, 2019. CA Cancer J. Clin. 74, 405–432 (2024).

    PubMed  Google Scholar 

  13. Kulhánová, I. et al. Proportion of cancers attributable to major lifestyle and environmental risk factors in the Eastern Mediterranean region. Int. J. Cancer 146, 646–656 (2020).

    Article  PubMed  Google Scholar 

  14. Nemati, S. et al. Population attributable proportion and number of cancer cases attributed to potentially modifiable risk factors in Iran in 2020. Int. J. Cancer 153, 1758–1765 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Soerjomataram, I. et al. Cancers related to lifestyle and environmental factors in France in 2015. Eur. J. Cancer 105, 103–113 (2018).

    Article  PubMed  Google Scholar 

  16. Teh, H. S. & Woon, Y. L. Burden of cancers attributable to modifiable risk factors in Malaysia. BMC Public Health 21, 410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arnold, M. et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995−2014 (ICBP SURVMARK-2): a population-based study. Lancet Oncol. 20, 1493–1505 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shelton, J. et al. 25 year trends in cancer incidence and mortality among adults aged 35−69 years in the UK, 1993−2018: retrospective secondary analysis. BMJ 384, e076962 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. WHO global report on trends in prevalence of tobacco use 2000–2030. https://www.who.int/publications/i/item/9789240088283 (World Health Organization, 2024).

  20. Manthey, J. et al. Global alcohol exposure between 1990 and 2017 and forecasts until 2030: a modelling study. Lancet 393, 2493–2502 (2019).

    Article  PubMed  Google Scholar 

  21. Arndt, M. B. et al. Global, regional, and national progress towards the 2030 global nutrition targets and forecasts to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 404, 2543–2583 (2024).

    Article  Google Scholar 

  22. WHO Report on the Global Tobacco Epidemic, 2023: Protect People From Tobacco Smoke (World Health Organization, 2023); https://www.who.int/publications/i/item/9789240077164

  23. Bauman, A. et al. Impact of the first year of the ‘This girl can’ physical activity and sport mass media campaign in Australia. BMC Public Health 23, 333 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ginsburg, O. & Horton, R. A Lancet Commission on women and cancer. Lancet 396, 11–13 (2020).

    Article  PubMed  Google Scholar 

  25. WHO Framework Convention on Tobacco Control. Gender-responsive Tobacco Control: Evidence and Options for Policies and Programmes (World Health Organization, 2018); https://fctc.who.int/resources/publications/m/item/gender-responsive-tobacco-control-evidence-and-options-for-policies-and-programmes

  26. Forman, D. et al. Global burden of human papillomavirus and related diseases. Vaccine 30, F12–F23 (2012).

    Article  PubMed  Google Scholar 

  27. Lei, J. et al. HPV vaccination and the risk of invasive cervical cancer. N. Engl. J. Med. 383, 1340–1348 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Y. C. et al. Global prevalence of Helicobacter pylori Infection and incidence of gastric cancer between 1980 and 2022. Gastroenterology 166, 605–619 (2024).

    Article  PubMed  Google Scholar 

  29. Malaty, H. M. et al. Age at acquisition of Helicobacter pylori infection: a follow-up study from infancy to adulthood. Lancet 359, 931–935 (2002).

    Article  PubMed  Google Scholar 

  30. Bellack, N. R., Koehoorn, M. W., MacNab, Y. C. & Morshed, M. G. A conceptual model of water’s role as a reservoir in Helicobacter pylori transmission: a review of the evidence. Epidemiol. Infect. 134, 439–449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malfertheiner, P. et al. Helicobacter pylori infection. Nat. Rev. Dis. Primers 9, 19 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chiang, T. H. et al. Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. Gut 70, 243–250 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Dorji, T. et al. Population-level cancer screening and cancer care in Bhutan, 2020−2023: a review. Lancet Reg. Health Southeast Asia 24, 100370 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tsuda, M. et al. Effect on Helicobacter pylori eradication therapy against gastric cancer in Japan. Helicobacter 22, e12415 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maucort-Boulch, D., de Martel, C., Franceschi, S. & Plummer, M. Fraction and incidence of liver cancer attributable to hepatitis B and C viruses worldwide. Int. J. Cancer 142, 2471–2477 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Schweitzer, A., Horn, J., Mikolajczyk, R. T., Krause, G. & Ott, J. J. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet 386, 1546–1555 (2015).

    Article  PubMed  Google Scholar 

  37. Kandeel, A. et al. Evidence for the elimination of viral hepatitis B and C in Egypt: results of a nationwide survey in 2022. Liver Int. 44, 955–965 (2024).

    Article  PubMed  Google Scholar 

  38. Salama, I. I. et al. Effectiveness of hepatitis B virus vaccination program in Egypt: multicenter national project. World J. Hepatol. 7, 2418–2426 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thursz, M., Njie, R. & Lemoine, M. Global eradication of hepatitis B—feasible or fallacy? Nat. Rev. Gastroenterol. Hepatol. 9, 492–494 (2012).

    Article  PubMed  Google Scholar 

  40. Clougherty, J. E. A growing role for gender analysis in air pollution epidemiology. Environ. Health Perspect. 118, 167–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Okello, G., Devereux, G. & Semple, S. Women and girls in resource poor countries experience much greater exposure to household air pollutants than men: results from Uganda and Ethiopia. Environ. Int. 119, 429–437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shupler, M. et al. Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution. Environ. Int. 120, 354–363 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Raimondi, S., Suppa, M. & Gandini, S. Melanoma epidemiology and sun exposure. Acta Derm. Venereol. 100, adv00136 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Iannacone, M. R. & Green, A. C. Towards skin cancer prevention and early detection: evolution of skin cancer awareness campaigns in Australia. Melanoma Manag. 1, 75–84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cumberbatch, M. G., Cox, A., Teare, D. & Catto, J. W. Contemporary occupational carcinogen exposure and bladder cancer: a systematic review and meta-analysis. JAMA Oncol. 1, 1282–1290 (2015).

    Article  PubMed  Google Scholar 

  46. Cislaghi, B. et al. Gender norms and gender equality in full-time employment and health: a 97-country analysis of the world values survey. Front. Psychol. 13, 689815 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Santana, V. S. & Ribeiro, F. S. Occupational cancer burden in developing countries and the problem of informal workers. Environ. Health 10 Suppl 1, S10 (2011).

    Article  PubMed  Google Scholar 

  48. Bray, F., Soerjomataram, I., Mery, L. & Ferlay, J. Improving the quality and coverage of cancer registries globally. Lancet 386, 1035–1036 (2015).

    Article  PubMed  Google Scholar 

  49. Bray, F. et al. Cancer Incidence in Five Continents: inclusion criteria, highlights from Volume X and the global status of cancer registration. Int. J. Cancer 137, 2060–2071 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Moore, S. C. et al. Endogenous estrogens, estrogen metabolites, and breast cancer risk in postmenopausal Chinese women. J. Natl Cancer Inst. 108, djw103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Freedman, N. D. et al. Impact of changing US cigarette smoking patterns on incident cancer: risks of 20 smoking-related cancers among the women and men of the NIH-AARP cohort. Int. J. Epidemiol. 45, 846–856 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee, C. H. et al. Independent and combined effects of alcohol intake, tobacco smoking and betel quid chewing on the risk of esophageal cancer in Taiwan. Int. J. Cancer 113, 475–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ferlay, J. et al. Global Cancer Observatory: Cancer Today (version 1.1). International Agency for Research on Cancer https://gco.iarc.fr/today/en (2024).

  54. International Statistical Classification of Diseases and Related Health Problems, 10th revision, Fifth edition, 2016 (World Health Organization, 2015); https://iris.who.int/handle/10665/246208

  55. Fritz, A. et al. International Classification of Diseases for Oncology 3rd edn (World Health Organization, 2000); https://www.who.int/standards/classifications/other-classifications/international-classification-of-diseases-for-oncology

  56. Bray, F. et al. Cancer Incidence in Five Continents, Vol. XII (IARC CancerBase No. 19). International Agency for Research on Cancer https://ci5.iarc.fr/ci5-xii/ (2023).

  57. Crump, K. S. Risk of benzene-induced leukemia: a sensitivity analysis of the pliofilm cohort with additional follow-up and new exposure estimates. J. Toxicol. Environ. Health 42, 219–242 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Elliott, A. M., Aucott, L. S., Hannaford, P. C. & Smith, W. C. Weight change in adult life and health outcomes. Obes. Res. 13, 1784–1792 (2005).

    Article  PubMed  Google Scholar 

  59. Grundy, A. et al. Cancer incidence attributable to alcohol consumption in Alberta in 2012. CMAJ Open 4, E507–E514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lanphear, B. P. & Buncher, C. R. Latent period for malignant mesothelioma of occupational origin. J. Occup. Med. 34, 718–721 (1992).

    CAS  PubMed  Google Scholar 

  61. O’Reilly, K. M., McLaughlin, A. M., Beckett, W. S. & Sime, P. J. Asbestos-related lung disease. Am. Fam. Physician 75, 683–688 (2007).

    PubMed  Google Scholar 

  62. Parker, E. D. & Folsom, A. R. Intentional weight loss and incidence of obesity-related cancers: the Iowa Women’s Health Study. Int. J. Obes. Relat. Metab. Disord. 27, 1447–1452 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Steenland, K., Stayner, L. & Deddens, J. Mortality analyses in a cohort of 18 235 ethylene oxide exposed workers: follow up extended from 1987 to 1998. Occup. Environ. Med. 61, 2–7 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Weiss, W. Cigarette smoking and lung cancer trends. A light at the end of the tunnel? Chest 111, 1414–1416 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990−2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet 397, 2337−2360 (2021).

  66. World Health Organization. Global Information System on Alcohol and Health. https://www.who.int/data/gho/data/themes/global-information-system-on-alcohol-and-health

  67. NCD Risk Factor Collaboration. National Adult Body-Mass Index – Data Downloads. https://www.ncdrisc.org/data-downloads-adiposity.html (2024).

  68. World Health Organization. Insufficient physical activity – indicator group. https://www.who.int/data/gho/data/themes/topics/indicator-groups/insufficient-physical-activity-indicator-group (2024).

  69. Rumgay, H. et al. Global burden of oral cancer in 2022 attributable to smokeless tobacco and areca nut consumption: a population attributable fraction analysis. Lancet Oncol. 25, 1413–1423 (2024).

    Article  PubMed  Google Scholar 

  70. United Nations Children’s Fund (UNICEF). Breastfeeding. https://data.unicef.org/topic/nutrition/breastfeeding/ (UNICEF Data, 2025).

  71. Air pollution: concentrations of fine particulate matter (PM2.5), SDG 11.6.2. World Health Organization https://www.who.int/data/gho/data/indicators/indicator-details/GHO/concentrations-of-fine-particulate-matter-(pm2-5) (2025).

  72. Langselius, O. et al. Global burden of cutaneous melanoma incidence attributable to ultraviolet radiation in 2022. Int. J. Cancer 157, 1110–1119 (2025).

    Article  CAS  PubMed  Google Scholar 

  73. WHO/ILO joint estimates of the work-related burden of disease and injury. World Health Organization https://www.who.int/teams/environment-climate-change-and-health/monitoring/who-ilo-joint-estimates (2021).

  74. Kehoe, T., Gmel, G., Shield, K. D., Gmel, G. & Rehm, J. Determining the best population-level alcohol consumption model and its impact on estimates of alcohol-attributable harms. Popul. Health Metr. 10, 6 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rehm, J. et al. Statistical modeling of volume of alcohol exposure for epidemiological studies of population health: the US example. Popul. Health Metr. 8, 3 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shield, K. D. & Rehm, J. Difficulties with telephone-based surveys on alcohol consumption in high-income countries: the Canadian example. Int. J. Methods Psychiatr. Res. 21, 17–28 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 403, 1027−1050 (2024).

  78. Arnold, M. et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 16, 36–46 (2015).

    Article  PubMed  Google Scholar 

  79. Prevalence of insufficient physical activity among adults. World Health Organization https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-insufficient-physical-activity-among-adults-aged-18-years-(age-standardized-estimate)-(-) (2017).

  80. WHO/ILO joint estimates of the work-related burden of disease and injury, 2000−2016: global monitoring report (World Health Organization, 2021); https://www.who.int/publications/i/item/9789240034945

  81. Pega, F., Hamzaoui, H., Náfrádi, B. & Momen, N. C. Global, regional and national burden of disease attributable to 19 selected occupational risk factors for 183 countries, 2000−2016: a systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Scand. J. Work Environ. Health 48, 158–168 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Reitsma, M. B. et al. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and initiation among young people in 204 countries and territories, 1990–2019. Lancet Public Health 6, e472–e481 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jordan, S. J., Whiteman, D. C., Purdie, D. M., Green, A. C. & Webb, P. M. Does smoking increase risk of ovarian cancer? A systematic review. Gynecol. Oncol. 103, 1122–1129 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: a Global Perspective (World Cancer Research Fund, 2018); https://www.wcrf.org/wp-content/uploads/2024/11/Summary-of-Third-Expert-Report-2018.pdf

  85. Shield, K. et al. National, regional, and global burdens of disease from 2000 to 2016 attributable to alcohol use: a comparative risk assessment study. Lancet Public Health 5, e51–e61 (2020).

    Article  PubMed  Google Scholar 

  86. Bagnardi, V. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose−response meta-analysis. Br. J. Cancer 112, 580–593 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Abar, L. et al. Body size and obesity during adulthood, and risk of lympho-haematopoietic cancers: an update of the WCRF-AICR systematic review of published prospective studies. Ann. Oncol. 30, 528–541 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Wolin, K. Y., Yan, Y., Colditz, G. A. & Lee, I. M. Physical activity and colon cancer prevention: a meta-analysis. Br. J. Cancer 100, 611–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Friedenreich, C. M. & Cust, A. E. Physical activity and breast cancer risk: impact of timing, type and dose of activity and population subgroup effects. Br. J. Sports Med. 42, 636–647 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Schmid, D. et al. A systematic review and meta-analysis of physical activity and endometrial cancer risk. Eur. J. Epidemiol. 30, 397–412 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Renfrew, M. J., McCormick, F. M., Wade, A., Quinn, B. & Dowswell, T. Support for healthy breastfeeding mothers with healthy term babies. Cochrane Database Syst. Rev. 5, CD001141 (2012).

    PubMed  Google Scholar 

  92. Hamra, G. B. et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ. Health Perspect. 122, 906–911 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Plummer, M., Franceschi, S., Vignat, J., Forman, D. & de Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer 136, 487–490 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. de Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 141, 664–670 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990−2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923−1994 (2018).

  96. Levin, M. L. The occurrence of lung cancer in man. Acta Unio Int. Contra Cancrum 9, 531–541 (1953).

    CAS  PubMed  Google Scholar 

  97. Rumgay, H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 22, 1071–1080 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Victora, C. G. et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387, 475–490 (2016).

    Article  PubMed  Google Scholar 

  99. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide (World Health Organization, 2021); https://www.who.int/publications/i/item/9789240034228

  100. Arnold, M. et al. Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int. J. Cancer 143, 1305–1314 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors received no specific funding for this work. Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization (IARC/WHO), the authors alone are responsible for the views expressed in this article, and they do not necessarily represent the decisions, policies or views of the IARC/WHO. We thank R.X.M. and his team at Octoma—L.L.-P., L. Jimenez-Perez and M. Erandi—for their assistance with the PAF calculations for insufficient physical activity, suboptimal breastfeeding, air pollution and occupational exposures.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by I.S. Analyses were conducted by H.F., O.L., J.V., H.R., R.M., M.S. and L.L.-P., under the supervision of and with input from I.S. The first manuscript draft was prepared by H.F. All authors contributed to the editing of the manuscript.

Corresponding author

Correspondence to Hanna Fink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Shilpa Murthy, Md. Mijan Rahman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ming Yang, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Total and modifiable risk-factor-attributable cancer cases in 2022.

Cancer cases attributable to modifiable risk factors in 2022 for a) all new cases in women, b) attributable-only in women, c) all new cases in men and d) attributable-only in men.

Extended Data Table 1 Adjusted population attributable fractions and attributable cases, by risk factor and world region in women
Extended Data Table 2 Adjusted population attributable fractions and attributable cases, by risk factor and world region in men

Supplementary information

Supplementary Information

Supplementary Table 1.1, Supplementary Table 2.1, Supplementary Tables 3.1−3.4, Supplementary Tables 4.1.1−4.1.2, Supplementary Tables 4.2.1−4.2.3, Supplementary Tables 4.3.1−4.3.3, Supplementary Tables 4.4.1−4.4.3, Supplementary Tables 4.5.1−4.5.2, Supplementary Table 4.6.1, Supplementary Table 4.7.1, Supplementary Table 4.8.1, Supplementary Table 4.9.1, Supplementary Tables 4.10.1−4.10.3 and Supplementary Tables 4.11.1−4.11.3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, H., Langselius, O., Vignat, J. et al. Global and regional cancer burden attributable to modifiable risk factors to inform prevention. Nat Med (2026). https://doi.org/10.1038/s41591-026-04219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41591-026-04219-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer