This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
LipidIN: a comprehensive repository for flash platform-independent annotation and reverse lipidomics
Nature Communications Open Access 16 May 2025
-
ROASMI: accelerating small molecule identification by repurposing retention data
Journal of Cheminformatics Open Access 14 February 2025
-
Insights into predicting small molecule retention times in liquid chromatography using deep learning
Journal of Cheminformatics Open Access 07 October 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout

Data availability
Data are freely available from the dedicated GitHub repository (https://github.com/michaelwitting/RepoRT). Source data are provided with this paper.
Code availability
All code is freely available from the dedicated GitHub repository (https://github.com/michaelwitting/RepoRT).
References
Héberger, K. J. Chromatogr. A 1158, 273–305 (2007).
Witting, M. & Böcker, S. J. Sep. Sci. 43, 1746–1754 (2020).
Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J. & Neumann, S. J. Cheminformatics 8, 3 (2016).
Bach, E., Szedmak, S., Brouard, C., Böcker, S. & Rousu, J. Proc. European Conference on Computational Biology (ECCB 2018), i875–i883 (2018).
Harrieder, E.-M., Kretschmer, F., Böcker, S. & Witting, M. J. Chromatogr. B 1188, 123069 (2022).
Stanstrup, J., Neumann, S. & Vrhovšek, U. Anal. Chem. 87, 9421–9428 (2015).
Kimata, K. et al. J. Chromatogr. Sci. 27, 721–728 (1989).
Snyder, L. R., Dolan, J. W. & Carr, P. W. J. Chromatogr. A 1060, 77–116 (2004).
Kretschmer, F., Seipp, J., Ludwig, M., Klau, G. W. & Böcker, S. Preprint at bioRxiv https://doi.org/10.1101/2023.03.27.534311 (2023).
Domingo-Almenara, X. et al. Nat. Commun. 10, 5811 (2019).
Acknowledgements
F.K., M.A.H., and S.B. are supported by Deutsche Forschungsgemeinschaft (BO 1910/23). F.K. and S.B. are supported by the Ministry for Economics, Sciences and Digital Society of Thuringia (Framework ProDigital, DigLeben-5575/10-9). E.-M.H. and M.W. are supported by Deutsche Forschungsgemeinschaft (MW 4382/10-1). We thank everybody who publicly shared their retention time data. We thank J. Büscher for providing and uploading unpublished data. We express particular thanks to J. Stanstrup, who allowed us to integrate data from PredRet into RepoRT.
Author information
Authors and Affiliations
Contributions
S.B. and M.W. designed the research. F.K., M.A.H., and M.W. implemented the repository. E.-M.H. manually curated datasets. F.K. and S.B. developed methods for automated error detection. E.-M.H. measured the systematically varying chromatographic parameters of the datasets. F.K. and M.A.H. implemented methods. E.-M.H. and M.W. performed a statistical analysis of the repository content. F.K., E.-M.H., S.B., and M.W. wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Methods thanks Joshua Rabinowitz and Juho Rousu for their contribution to the peer review of this work.
Supplementary information
Supplementary Information
Supplementary Notes 1–7, Supplementary Figs. 1–6, and Supplementary Tables 1, 4, 6 and 7
Supplementary Table 2
Tanaka parameters
Supplementary Table 3
Hydrophobic subtraction model parameters
Supplementary Table 5
Standard column names used in RepoRT
Source data
Source Data Fig. 1
Raw data for panels a,b,c,d,f
Rights and permissions
About this article
Cite this article
Kretschmer, F., Harrieder, EM., Hoffmann, M.A. et al. RepoRT: a comprehensive repository for small molecule retention times. Nat Methods 21, 153–155 (2024). https://doi.org/10.1038/s41592-023-02143-z
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41592-023-02143-z
This article is cited by
-
ROASMI: accelerating small molecule identification by repurposing retention data
Journal of Cheminformatics (2025)
-
LipidIN: a comprehensive repository for flash platform-independent annotation and reverse lipidomics
Nature Communications (2025)
-
Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening
Analytical and Bioanalytical Chemistry (2025)
-
Insights into predicting small molecule retention times in liquid chromatography using deep learning
Journal of Cheminformatics (2024)
-
Retention time dataset for heterogeneous molecules in reversed–phase liquid chromatography
Scientific Data (2024)