Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable co-sequencing of RNA and DNA from individual nuclei

Abstract

The ideal technology for directly investigating the relationship between genotype and phenotype would analyze both RNA and DNA genome-wide and with single-cell resolution; however, existing tools lack the throughput required for comprehensive analysis of complex tumors and tissues. We introduce a highly scalable method for jointly profiling DNA and expression following nucleosome depletion (DEFND-seq). In DEFND-seq, nuclei are nucleosome-depleted, tagmented and separated into individual droplets for messenger RNA and genomic DNA barcoding. Once nuclei have been depleted of nucleosomes, subsequent steps can be performed using the widely available 10x Genomics droplet microfluidic technology and commercial kits. We demonstrate the production of high-complexity mRNA and gDNA sequencing libraries from thousands of individual nuclei from cell lines, fresh and archived surgical specimens for associating gene expression with both copy number and single-nucleotide variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and characterization of nucleosome-depletion methods.
Fig. 2: DEFND-seq.
Fig. 3: Copy number variation of DEFND-seq BJ fibroblasts.
Fig. 4: DEFND-seq applied to GBM tumor sample.
Fig. 5: Focal amplifications within GBM tumor cells.
Fig. 6: SNP and SNV detection.

Similar content being viewed by others

Data availability

The sequencing data and count matrices reported in this paper are available in the Gene Expression Omnibus (GSE224149). Fragment files for GBM tumors are stored on Zenodo at https://doi.org/10.5281/zenodo.13984672 (ref. 75). The COSMIC database (https://cancer.sanger.ac.uk/cosmic) was leveraged for SNP and SNV calling. Data from the sci-L3 assay were downloaded from the Sequence Read Archive project (PRJNA511715). Bulk BJ WGS data were acquired from GSE63577 (SRR1660537) and 10x ATAC PBMC data were acquired from 10x Genomics17. Source data are provided with this paper.

Code availability

All source code is available on the Sims Laboratory GitHub repository at https://github.com/simslab/, including code for generating expression count matrices (DropSeqPipeline8), clustering and differential expression (cluster_diffex2018) and genomic DNA analysis (dna10x).

References

  1. Kashima, Y. et al. Single-cell sequencing techniques from individual to multiomics analyses. Exp. Mol. Med. 52, 1419–1427 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Mallory, X. F., Edrisi, M., Navin, N. & Nakhleh, L. Methods for copy number aberration detection from single-cell DNA-sequencing data. Genome Biol. 21, 1–22 (2020).

    Google Scholar 

  3. Suvà, M. L. & Tirosh, I. Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol. Cell 75, 7–12 (2019).

    PubMed  Google Scholar 

  4. Macaulay, I. C., Ponting, C. P. & Voet, T. Single-cell multiomics: multiple measurements from single cells. Trends Genet. 33, 155–168 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N. & Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat. Cell Biol. 20, 1349–1360 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    PubMed  CAS  Google Scholar 

  9. Reuter, J. A., Spacek, D. V., Pai, R. K. & Snyder, M. P. Simul-seq: combined DNA and RNA sequencing for whole-genome and transcriptome profiling. Nat. Methods 13, 953–958 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Han, K. Y. et al. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells. Genome Res. 28, 75–87 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Miles, L. A. et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587, 477–482 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Yin, Y. et al. High-throughput single-cell sequencing with linear amplification. Mol. Cell 76, 676–690. e610 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Vitak, S. A. et al. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat. Methods 14, 302–308 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen, C. et al. Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science 356, 189–194 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. 10x Genomics. 500 peripheral blood mononuclear cells (PBMCs) from a healthy donor (Next GEM v.1.1) (2021); https://www.10xgenomics.com/datasets/500-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-next-gem-v-1-1-1-1-standard-2-0-0

  18. Gonzalez-Pena, V. et al. Accurate genomic variant detection in single cells with primary template-directed amplification. Proc. Natl Acad. Sci. USA 118, e2024176118 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Marthandan, S. et al. Conserved senescence associated genes and pathways in primary human fibroblasts detected by RNA-Seq. PLoS ONE 11, e0154531 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Davis, M. E. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20, S2 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang, J. et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768–776 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer Cell 17, 98–110 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Yuan, J. et al. Single-cell transcriptome analysis of lineage diversity in high-grade glioma. Genome Med. 10, 1–15 (2018).

    Google Scholar 

  25. Chaligne, R. et al. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat. Genet. 53, 1469–1479 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e821 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhao, W. et al. Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq. Genome Med. 13, 82 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Reifenberger, G., Liu, L., Ichimura, K., Schmidt, E. E. & Collins, V. P. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53, 2736–2739 (1993).

    PubMed  CAS  Google Scholar 

  29. Lei, L. et al. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS ONE 6, e20041 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Szerlip, N. J. et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl Acad. Sci. USA 109, 3041–3046 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Krishna, K. V., Dubey, S. K., Singhvi, G., Gupta, G. & Kesharwani, P. MAPK pathway: potential role in glioblastoma multiforme. Interdiscip. Neurosurg. 23, 100901 (2021).

    Google Scholar 

  33. Hui, A. B.-Y., Lo, K.-W., Yin, X.-L., Poon, W.-S. & Ng, H.-K. Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab. Invest. 81, 717–723 (2001).

    PubMed  CAS  Google Scholar 

  34. Arslan, S. et al. Sequencing by avidity enables high accuracy with low reagent consumption. Nat. Biotechnol. 42, 132–138 (2024).

    PubMed  CAS  Google Scholar 

  35. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    PubMed  CAS  Google Scholar 

  36. Nickel, G. C. et al. Characterizing mutational heterogeneity in a glioblastoma patient with double recurrence. PLoS ONE 7, e35262 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. De Souza, C. et al. Effect of the p53 P72R polymorphism on mutant TP53 allele selection in human cancer. J. Natl Cancer Inst. 113, 1246–1257 (2021).

    PubMed  PubMed Central  Google Scholar 

  38. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    PubMed  CAS  Google Scholar 

  39. McFarland, J. M. et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11, 4296 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Gaublomme, J. T. et al. Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat. Commun. 10, 2907 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e289 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Rodriguez-Meira, A. et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol. Cell 73, 1292–1305.e1298 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e1817 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36, 442–450 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923.e1925 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Biddy, B. A. et al. Single-cell mapping of lineage and identity in direct reprogramming. Nature 564, 219–224 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Al-Dalahmah, O. et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol. Commun. 8, 1–21 (2020).

    Google Scholar 

  51. Krishnaswami, S. R. et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat. Protoc. 11, 499–524 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Hobson, B. D. et al. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep. 38, 110208 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Yuan, J. & Sims, P. A. An automated microwell platform for large-scale single cell RNA-seq. Sci. Rep. 6, 33883 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    PubMed  CAS  Google Scholar 

  56. Levitin, H. M. et al. De novo gene signature identification from single-cell RNA-seq with hierarchical Poisson factorization. Mol. Syst. Biol. 15, e8557 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  59. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323. e1330 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  61. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  62. Fang, R. et al. Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nat. Commun. 12, 1337 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001.e5919 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Lai, D. shahcompbio/HMMcopy_utils. GitHub https://github.com/shahcompbio/hmmcopy_utils (2011).

  65. Shah, S. P. et al. Integrating copy number polymorphisms into array CGH analysis using a robust HMM. Bioinformatics 22, e431–e439 (2006).

    PubMed  CAS  Google Scholar 

  66. Ha, G. et al. Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer. Genome Res. 22, 1995–2007 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Zahn, H. et al. Scalable whole-genome single-cell library preparation without preamplification. Nat. Methods 14, 167–173 (2017).

    PubMed  CAS  Google Scholar 

  68. Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud: using Docker, GATK, and WDL in Terra (O’Reilly Media, 2020).

  69. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164–e164 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    PubMed  PubMed Central  Google Scholar 

  72. Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    PubMed  CAS  Google Scholar 

  73. Yu, L. et al. scONE-seq: a single-cell multi-omics method enables simultaneous dissection of phenotype and genotype heterogeneity from frozen tumors. Sci. Adv. 9, eabp8901 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Li, H. lh3/seqtk. GitHub https://github.com/lh3/seqtk (2012).

  75. Olsen, T. Processed GBM DEFND-seq data. Zenodo https://doi.org/10.5281/zenodo.13984672 (2024).

Download references

Acknowledgements

Some of the research reported here was performed in the Sulzberger Columbia Genome Center, which is supported by National Institutes of Health (NIH)/National Cancer Institute (NCI) grant P30CA013696 and NIH/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grant P30DK132710. P.A.S. and S.Z. were supported by a RISE grant from Columbia University. P.A.S. was supported by NIH/NCI grant U54CA274506. P.A.S., P.C., and J.N.B. were supported by NIH/National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS103473. S.Z. was supported by NIH/NCI grant R01CA275184. P.T. was supported by the I.I. Rabi Scholars Program of Columbia University.

Author information

Authors and Affiliations

Authors

Contributions

T.R.O., S.Z. and P.A.S. conceived experiments. T.R.O., P.T., R.K.S. and P.A.S. analyzed data. T.R.O. and P.T. performed the experiments. J.F. managed biobanked samples. P.C. and J.N.B. procured and characterized specimens. T.R.O. and P.A.S. wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Peter A. Sims.

Ethics declarations

Competing interests

P.A.S. receives patent royalties from Guardant Health. The other authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Lei Tang and Hui Hua, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Copy number variation heatmap of freshly resected GBM tumor cells. Cells are grouped by gDNA cluster.

Chromosome location reference on bottom margin.

Extended Data Fig. 2 DEFND-seq applied to cryopreserved GBM tumor sample.

(a) Clustering of GBM cells by gene expression. (b) Same as (a) but colored by expression of MOBP. (c) Highly expressed genes for each cluster in (a). (d) log fold change of PTEN in the genome of the clusters in (a) showing deletions in clusters 1–6. Bars indicate the medians of each cluster. (e) log fold change of MYCN in the genome of clusters in (a) with amplifications in clusters 1–6. (f) Same as (e) but with CDK4. (g) – (i) Cells from (a) colored by genomic log fold change in (g) PTEN, (h) MYCN, and (i) CDK4. (j) – (l) Cells from (a) colored by log-normalized transcript counts for (j) PTEN, (k) MYCN, and (l) CDK4. (m) Pileup of every base along selected genomic regions for all transformed cells. PTEN, MYCN, and CDK4 regions are presented along with a selection of genes located in the sampled window.

Extended Data Fig. 3 Copy number variation heatmap of cryopreserved GBM tumor cells.

Cells are grouped by gene expression cluster. Chromosome location reference on bottom margin.

Extended Data Fig. 4 SNP and SNV detection.

(a) Sequencing saturation analysis of the number of unique fragments per nucleus for a GBM DEFND-seq library sequenced on an Illumina NovaSeq 6000, and on an Element Aviti. (b) Sequencing saturation analysis of the transcription start site enrichment for a library sequenced on both NovaSeq and Aviti sequencers. (c) Insert size distribution for the GBM library sequenced on NovaSeq and Aviti sequencers. (d) PREX1 genomic mutation detection projected on a UMAP derived from the gene expression dataset. (e) Same as (d) but colored by PREX1 expression. (f) Average frequency of PREX1 variant allele and average expression of PREX1 in astrocyte-like, proliferating, and proneural clusters. (g) Integrated genomic viewer (IGV) style plots of the transformed cells showing exonic regions of PREX1, coverage, and the location of the SNV49. The SNV is magnified to show the missense mutation and affected amino acid. Individual reads are shown for both the NovaSeq and Aviti sequencers and each read is colored by cell of origin (cell barcode). (h) Same as (g) but for the p.P72R mutation on TP53.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1 and 2 and Protocol.

Reporting Summary

Source data

Source Data Fig. 1

Statistical Source Data for Fig. 1.

Source Data Fig. 2

Statistical Source Data for Fig. 2.

Source Data Fig. 3

Statistical Source Data (individual data points for Fig. 3).

Source Data Fig. 4

Statistical Source Data for Fig. 4.

Source Data Fig. 5

Statistical Source Data (.xlsx) for Fig. 5.

Source Data Fig. 6

Statistical Source Data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, T.R., Talla, P., Sagatelian, R.K. et al. Scalable co-sequencing of RNA and DNA from individual nuclei. Nat Methods 22, 477–487 (2025). https://doi.org/10.1038/s41592-024-02579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-024-02579-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer