Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ESPRESSO: spatiotemporal omics based on organelle phenotyping

Abstract

Omics technologies such as genomics, transcriptomics, proteomics and metabolomics methods, have been instrumental in improving our understanding of complex biological systems by providing high-dimensional phenotypes of cell populations and single cells. Despite fast-paced advancements, these methods are limited in their ability to include a temporal dimension. Here, we introduce ESPRESSO (Environmental Sensor Phenotyping RElayed by Subcellular Structures and Organelles), a technique that provides single-cell, high-dimensional phenotyping resolved in space and time. ESPRESSO combines fluorescent labeling, advanced microscopy and image and data analysis methods to extract morphological and functional information from organelles at the single-cell level. We validate ESPRESSO’s methodology and its application across numerous cellular systems for the analysis of cell type, stress response, differentiation and immune cell polarization. We show that ESPRESSO can correlate phenotype changes with gene expression, and demonstrate its applicability to 3D cultures, offering a path to improved spatially and temporally resolved biological exploration of cellular states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ESPRESSO workflow and organelle phenotypes of diverse cell lines.
Fig. 2: Differential ESPRESSO phenotype response to stressor exposure.
Fig. 3: ESPRESSO phenotype evolution during keratinocyte differentiation.
Fig. 4: Correlation of ESPRESSO phenotype evolution during macrophage M1 polarization with gene expression.
Fig. 5: ESPRESSO and scRNA-seq: multiomics phenotype characterization of keratinocyte differentiation.
Fig. 6: ESPRESSO in 3D tumor spheroids: phenotype evolution and response to stressors.

Similar content being viewed by others

Data availability

Demonstration data are available from Zenodo: https://zenodo.org/records/12737891 (ref. 79). Due to data size constraints, imaging data can be requested from Lorenzo Scipioni (lorenzo.scipioni@inserm.fr).

Code availability

Demonstration code is available from Zenodo: https://zenodo.org/records/12737891, scRNA-seq analysis can be found at https://github.com/yl-jia/ESPRESSO.

References

  1. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cui, M., Cheng, C. & Zhang, L. High-throughput proteomics: a methodological mini-review. Lab. Invest. 102, 1170–1181 (2022).

    PubMed  PubMed Central  Google Scholar 

  3. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).

    CAS  PubMed  Google Scholar 

  5. Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jain, A. & Zoncu, R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol. Metab. 60, 101481 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, Y. et al. Characterizing organelles in live stem cells using label-free optical diffraction tomography. Mol. Cells 44, 851–860 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahlqvist, K. J., Suomalainen, A. & Hämäläinen, R. H. Stem cells, mitochondria and aging. Biochim. Biophys. Acta 1847, 1380–1386 (2015).

    CAS  PubMed  Google Scholar 

  9. Jarc, E. & Petan, T. Lipid droplets and the management of cellular stress. Yale J. Biol. Med. 92, 435–452 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Frank, M. et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta 1823, 2297–2310 (2012).

    CAS  PubMed  Google Scholar 

  11. Mukhopadhyay, S. et al. Serum starvation induces anti-apoptotic cIAP1 to promote mitophagy through ubiquitination. Biochem. Biophys. Res. Commun. 479, 940–946 (2016).

    CAS  PubMed  Google Scholar 

  12. Cruz, A. L. S., Barreto, E. A., Fazolini, N. P. B., Viola, J. P. B. & Bozza, P. T. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis. 11, 105 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678–692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Loeffler, D. et al. Asymmetric organelle inheritance predicts human blood stem cell fate. Blood 139, 2011–2023 (2022).

    CAS  PubMed  Google Scholar 

  15. Bray, M. A. et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Novikova, S. et al. Nuclear proteomics of induced leukemia cell differentiation. Cells 11, 3221 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chikte, S., Panchal, N. & Warnes, G. Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry A 85, 169–178 (2014).

    PubMed  Google Scholar 

  18. Scaduto, R. C. & Grotyohann, L. W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 76, 469–477 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cutrale, F. et al. Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging. Nat. Methods 14, 149–152 (2017).

    CAS  PubMed  Google Scholar 

  20. Scipioni, L., Rossetta, A., Tedeschi, G. & Gratton, E. Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging. Nat. Methods 18, 542–550 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fereidouni, F., Bader, A. N. & Gerritsen, H. C. Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images. Opt. Express 20, 12729 (2012).

    CAS  PubMed  Google Scholar 

  22. Cutrale, F., Salih, A. & Gratton, E. Spectral phasor approach for fingerprinting of photo-activatable fluorescent proteins Dronpa, Kaede and KikGR. Methods Appl. Fluoresc. 1, 35001 (2013).

    CAS  PubMed  Google Scholar 

  23. von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).

    Google Scholar 

  24. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).

    CAS  PubMed  Google Scholar 

  25. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    CAS  PubMed  Google Scholar 

  26. Kolin, D. L. & Wiseman, P. W. Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem. Biophys. 49, 141–164 (2007).

    CAS  PubMed  Google Scholar 

  27. Scipioni, L., Gratton, E., Diaspro, A. & Lanzanò, L. Phasor analysis of local ICS detects heterogeneity in size and number of intracellular vesicles. Biophys. J. 111, 619–629 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Costantino, S., Comeau, J. W. D., Kolin, D. L. & Wiseman, P. W. Accuracy and dynamic range of spatial image correlation and cross-correlation spectroscopy. Biophys. J. 89, 1251–1260 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Oneto, M. et al. Nanoscale distribution of nuclear sites by super-resolved image cross-correlation spectroscopy. Biophys. J. 117, 2054–2065 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Petersen, N. O., Höddelius, P. L., Wiseman, P. W., Seger, O. & Magnusson, K. E. Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys. J. 65, 1135–1146 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang, Z., Lou, J., Scipioni, L., Gratton, E. & Hinde, E. Quantifying nuclear wide chromatin compaction by phasor analysis of histone Förster resonance energy transfer (FRET) in frequency domain fluorescence lifetime imaging microscopy (FLIM) data. Data Brief 30, 105401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lou, J. et al. Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response. Proc. Natl Acad. Sci. USA 116, 7323–7332 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y., Huang, H., Rudin, C. & Shaposhnik, Y. Understanding how dimension reduction tools work: an empirical approach to deciphering T-SNE, UMAP, TriMap, and PaCMAP for data visualization. J. Mach. Learn. Res. 22, 1–73 (2021).

    Google Scholar 

  34. Fraley, C. & Raftery, A. E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002).

    Google Scholar 

  35. Xiao, J., Lu, J. & Li, X. Davies Bouldin Index based hierarchical initialization K-means. Intell. Data Anal. 21, 1327–1338 (2017).

    Google Scholar 

  36. Dickson, M. A. et al. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436–1447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tedeschi, G. et al. Monitoring macrophage polarization with gene expression reporters and bioluminescence phasor analysis. Chem. Biomed. Imaging 2, 765–774 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Iriondo, O. et al. Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget 6, 31721–31739 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Li, Q., Ma, R. & Zhang, M. CoCl2 increases the expression of hypoxic markers HIF-1α, VEGF and CXCR4 in breast cancer MCF-7 cells. Oncol. Lett. 15, 1119–1124 (2018).

    PubMed  Google Scholar 

  40. Bai, F. et al. Simvastatin induces breast cancer cell death through oxidative stress up-regulating miR-140-5p. Aging 11, 3198–3219 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, R. et al. Molecular basis of V-ATPase inhibition by bafilomycin A1. Nat. Commun. 12, 1782 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dispersyn, G., Nuydens, R., Connors, R., Borgers, M. & Geerts, H. Bcl-2 protects against FCCP-induced apoptosis and mitochondrial membrane potential depolarization in PC12 cells. Biochim. Biophys. Acta 1428, 357–371 (1999).

    CAS  PubMed  Google Scholar 

  43. Sun, Y., Jiang, X., Chen, S. & Price, B. D. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 580, 4353–4356 (2006).

    CAS  PubMed  Google Scholar 

  44. Tóth, K. F. et al. Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin. J. Cell Sci. 117, 4277–4287 (2004).

    PubMed  Google Scholar 

  45. Mylonis, I. et al. Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression. J. Cell Sci. 125, 3485–3493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Munir, R., Lisec, J., Swinnen, J. V. & Zaidi, N. Lipid metabolism in cancer cells under metabolic stress. Br. J. Cancer 120, 1090–1098 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Jones, S. P., Teshima, Y., Akao, M. & Marbán, E. Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ. Res. 93, 697–699 (2003).

    CAS  PubMed  Google Scholar 

  48. Zhang, Y. et al. Simvastatin improves lysosome function via enhancing lysosome biogenesis in endothelial cells. Front. Biosci. Landmark Ed. 25, 283–298 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, B., Zhu, F., Xia, X., Park, E. & Hu, Y. A tale of terminal differentiation: IKKα, the master keratinocyte regulator. Cell Cycle 8, 527–531 (2009).

    CAS  PubMed  Google Scholar 

  50. Monteleon, C. L. et al. Lysosomes support the degradation, signaling, and mitochondrial metabolism necessary for human epidermal differentiation. J. Invest. Dermatol. 138, 1945–1954 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gdula, M. R. et al. Remodeling of three-dimensional organization of the nucleus during terminal keratinocyte differentiation in the epidermis. J. Invest. Dermatol. 133, 2191–2201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Charest, J. L., Jennings, J. M., King, W. P., Kowalczyk, A. P. & García, A. J. Cadherin-mediated cell–cell contact regulates keratinocyte differentiation. J. Invest. Dermatol. 129, 564–572 (2009).

    CAS  PubMed  Google Scholar 

  53. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, S. et al. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 8, 207 (2023).

    PubMed  PubMed Central  Google Scholar 

  55. Xaus, J. et al. LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-α. Blood 95, 3823–3831 (2000).

    CAS  PubMed  Google Scholar 

  56. Nayak, P., Bentivoglio, V., Varani, M. & Signore, A. Three-dimensional in vitro tumor spheroid models for evaluation of anticancer therapy: recent updates. Cancers 15, 4846 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ziperstein, M. J., Guzman, A. & Kaufman, L. J. Breast cancer cell line aggregate morphology does not predict invasive capacity. PLoS One 10, e0139523 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Lee, S.-Y., Koo, I.-S., Hwang, H. J. & Lee, D. W. In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov. 28, 119–137 (2023).

    CAS  PubMed  Google Scholar 

  59. Huang, Z., Yu, P. & Tang, J. Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model. Onco Targets Ther. 13, 5395–5405 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hofmann, S., Cohen-Harazi, R., Maizels, Y. & Koman, I. Patient-derived tumor spheroid cultures as a promising tool to assist personalized therapeutic decisions in breast cancer. Transl. Cancer Res. 11, 134–147 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gilazieva, Z., Ponomarev, A., Rutland, C., Rizvanov, A. & Solovyeva, V. Promising applications of tumor spheroids and organoids for personalized medicine. Cancers 12, 2727 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yao, Z. et al. Multiplexed bioluminescence microscopy via phasor analysis. Nat. Methods 19, 893–898 (2022).

    CAS  PubMed  Google Scholar 

  63. Tedeschi, G., Palomba, F., Scipioni, L. & Digman, M. A. Multimodal phasor approach to study breast cancer cell invasion in a 3D spheroid model. Chem. Biomed. Imaging 3, 433–442 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Reynolds, D. S. et al. Breast cancer spheroids reveal a differential cancer stem cell response to chemotherapeutic treatment. Sci. Rep. 7, 10382 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. A. Naveena, H. & Bhatia, D. Hypoxia modulates cellular endocytic pathways and organelles with enhanced cell migration and 3D cell invasion. Chembiochem 24, e202300506 (2023).

    CAS  PubMed  Google Scholar 

  66. Bytautaite, M. & Petrikaite, V. Comparative study of lipophilic statin activity in 2D and 3D in vitro models of human breast cancer cell lines MDA-MB-231 and MCF-7. Onco Targets Ther. 13, 13201–13209 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Held, M. et al. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat. Methods 7, 747–754 (2010).

    CAS  PubMed  Google Scholar 

  68. Viana, M. P. et al. Integrated intracellular organization and its variations in human iPS cells. Nature 613, 345–354 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kobayashi-Kirschvink, K. J. et al. Prediction of single-cell RNA expression profiles in live cells by Raman microscopy with Raman2RNA. Nat. Biotechnol. 42, 1726–1734 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wiggins, L. et al. The CellPhe toolkit for cell phenotyping using time-lapse imaging and pattern recognition. Nat. Commun. 14, 1854 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Suzuki, K. et al. Five colour variants of bright luminescent protein for real-time multicolour bioimaging. Nat. Commun. 7, 13718 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Germain, P.-L., Lun, A., Meixide, C. G., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res 10, 979 (2022).

    PubMed Central  Google Scholar 

  76. Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Enzo, E. et al. Single-keratinocyte transcriptomic analyses identify different clonal types and proliferative potential mediated by FOXM1 in human epidermal stem cells. Nat. Commun. 12, 2505 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Borcherding, N. et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun. Biol. 4, 122 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Scipioni, L. Demo code for ‘ESPRESSO: spatiotemporal omics based on organelle phenotyping’: https://doi.org/10.1101/2024.06.13.598932. Zenodo (2024).

Download references

Acknowledgements

This work was supported by funds from the Fondation Toulouse Cancer Santé (Chaire Oncobreast to L.S.), the National Science Foundation grants CBET2134916 to S.X.A. and Y.Y.J. and 1847005 to M.A.D., and the Allen Distinguished Investigator Award, a Paul G. Allen Frontiers Group advised grant of the Paul G. Allen Family Foundation (to J.A.P. and M.A.D.). The authors acknowledge the support of the Laboratory for Fluorescence Dynamics (P41GM103540), the American Italian Cancer Foundation (to M.D.B.), the Chao Family Comprehensive Cancer Center Genomics High-Throughput Facility Shared Resource, supported by the NCI of the NIH under award no. P30CA062203, and the UCI Skin Biology Resource Center supported by NIAMS under award no. P30AR075047.

Author information

Authors and Affiliations

Authors

Contributions

L.S. conceived the idea, performed experiments and wrote code. G.T. conceived the idea and performed experiments. M.X.N. generated the RAW246.7-NOS2 cell line. Y.Y.J. performed and analyzed the scRNA-seq experiments. Y.Y.J. and S.X.A. advised on the keratinocytes experiments and interpretation. S.Z. performed the cell cycle experiment. L.P.H. performed the viability assays. M.D.B. provided reagents and helped with interpretation. S.X.A., J.A.P., E.G. and M.A.D. provided support and supervised the project. L.S. took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding authors

Correspondence to Lorenzo Scipioni or Michelle A. Digman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Sang-Hee Shim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Madhura Mukhopadhyay, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Table 1.

Reporting Summary

Supplementary Video 1

ESPRESSO Phenotype evolution in keratinocytes – Control Conditions. PacMAP for each individual time point (left) for the keratinocyte differentiation experiment (Control condition) shown in Fig. 3. Each point represents a cell detected in the corresponding frame (right). Points in the scatter plot (left) and cell masks in the image (right) are color-coded according to the cluster they belong to, following the same color-code as in Fig. 3.

Supplementary Video 2

ESPRESSO Phenotype evolution in keratinocytes – Calcium-induced differentiation. PacMAP for each individual time point (left) for the keratinocyte differentiation experiment (Calcium-induced differentiation condition) shown in Fig. 3. Each point represents a cell detected in the corresponding frame (right). Points in the scatter plot (left) and cell masks in the image (right) are color-coded according to the cluster they belong to, following the same color-code as in Fig. 3.

Supplementary Code

Code details.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scipioni, L., Tedeschi, G., Navarro, M.X. et al. ESPRESSO: spatiotemporal omics based on organelle phenotyping. Nat Methods 22, 2349–2361 (2025). https://doi.org/10.1038/s41592-025-02863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-025-02863-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing