Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

EMProt improves structure determination from cryo-EM maps

Abstract

Cryo-electron microscopy (cryo-EM) has become the mainstream technique for macromolecular structure determination. However, because of intrinsic resolution heterogeneity, accurate modeling of all-atom structure from cryo-EM maps remains challenging even for maps at near-atomic resolution. Addressing the challenge, we present EMProt, a fully automated method for accurate protein structure determination from cryo-EM maps by efficiently integrating map information and structure prediction with a three-track attention network. EMProt is extensively evaluated on a diverse test set of 177 experimental cryo-EM maps with up to 54 chains in a case at <4-Å resolution, and compared to state-of-the-art methods including DeepMainmast, ModelAngelo, phenix.dock_and_rebuild and AlphaFold3. It is shown that EMProt greatly outperforms the existing methods in recovering the protein structure and building the complete structure. In addition, the built models by EMrot exhibit a high accuracy in model-to-map fit and structure validations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the EMProt framework.
Fig. 2: Comparison of EMProt, DeepMainmast, ModelAngelo and PHENIX in recovering the PDB structures on the test set of n = 177 maps.
Fig. 3: Comparison of the built models by EMProt, DeepMainmast, ModelAngelo and PHENIX in terms of recovering the PDB structures.
Fig. 4: Comparison of EMProt, DeepMainmast, PHENIX and AF3 in building the complete structure on the test set of n = 177 maps.
Fig. 5: Comparison of the models built by EMProt, DeepMainmast, PHENIX and AF3 in terms of building the complete structures.
Fig. 6: Quality assessment of the built models by local confidence scores.

Similar content being viewed by others

Data availability

All published datasets used in this paper were taken from the EMDB and PDB (accession codes specified in the figure captions and Supplementary Tables). All raw data of the evaluation results are provided in the article and Supplementary Information. The list of items in the test set is available in Supplementary Table 1. The list of training items is available in Supplementary Table 6. Source data are provided with this paper.

Code availability

The EMProt package is freely available online for academic or noncommercial users (http://huanglab.phys.hust.edu.cn/EMProt or https://github.com/huang-laboratory/EMProt). A link to a demo that runs on Google Colab and requires no installation on the local device is available on the GitHub repository.

References

  1. Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat. Methods. 13, 24–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12, 209–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng, Y. Single-particle cryo-EM—how did it get here and where will it go. Science 361, 876–880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lawson, C. L. et al. EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44, D396–D403 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in PHENIX. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De la Rosa-Trevín, J. M. et al. Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J. Struct. Biol. 195, 93–99 (2016).

    Article  PubMed  Google Scholar 

  8. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Vilas, J. L., Carazo, J. M. & Sorzano, C. O. S. Emerging themes in cryoEM—single particle analysis image processing. Chem. Rev. 122, 13915–13951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods. 15, 905–908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Terashi, G. & Kihara, D. De novo main-chain modeling for EM maps using MAINMAST. Nat. Commun. 9, 1618 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. He, J. & Huang, S.-Y. Full-length de novo protein structure determination from cryo-EM maps using deep learning. Bioinformatics 37, 3480–3490 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Si, D. et al. Deep learning to predict protein backbone structure from high-resolution cryo-em density maps. Sci. Rep. 10, 4282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, K., Wang, Z., Shi, J., Li, H. & Zhang, Q. C. A2-net: molecular structure estimation from cryo-EM density volumes. In Proc. 33rd AAAI Conference on Artificial Intelligence (eds van Hentenryck, P. & Zhou, Z.-H.) (AAAI, 2019).

  16. Pfab, J., Phan, N. M. & Si, D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl Acad. Sci. USA 118, e2017525118 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Giri, N. & Cheng, J. De novo atomic protein structure modeling for cryoEM density maps using 3D transformer and HMM. Nat. Commun. 15, 5511 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature 628, 450–457 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawabata, T. Multiple subunit fitting into a low-resolution density map of a macromolecular complex using a Gaussian mixture model. Biophys. J. 95, 4643–4658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wriggers, W. Conventions and workflows for using Situs. Acta Crystallogr. D Biol. Crystallogr. 68, 344–351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kovacs, J. A., Galkin, V. E. & Wriggers, W. Accurate flexible refinement of atomic models against medium-resolution cryo-EM maps using damped dynamics. BMC Struct. Biol. 18, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. He, J., Lin, P., Chen, J., Cao, H. & Huang, S.-Y. Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly. Nat. Commun. 13, 4066 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, X. et al. Progressive assembly of multi-domain protein structures from cryo-EM density maps. Nat. Comput. Sci. 2, 265–275 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Z. et al. DEMO-EM2: assembling protein complex structures from cryo-EM maps through intertwined chain and domain fitting. Brief. Bioinform. 25, bbae113 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Terwilliger, T. C. et al. Improved AlphaFold modeling with implicit experimental information. Nat. Methods. 19, 1376–1382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, X., Zhang, B., Freddolino, P. L. & Zhang, Y. CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks. Nat. Methods. 19, 195–204 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Terashi, G., Wang, X., Prasad, D., Nakamura, T. & Kihara, D. DeepMainmast: integrated protocol of protein structure modeling for cryo-EM with deep learning and structure prediction. Nat. Methods. 21, 122–131 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krogh, A., Brown, M., Mian, I. S., Sjölander, K. & Haussler, D. Hidden Markov models in computational biology. Applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Larralde, M. & Zeller, G. PyHMMER: a Python library binding to HMMER for efficient sequence analysis. Bioinformatics 39, btad214 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, C., Shine, M., Pyle, A. M. & Zhang, Y. US-align: universal structure alignments of proteins, nucleic acids, and macromolecular complexes. Nat. Methods 19, 1109–1115 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol. 74, 814–840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 6, 12–21 (2010).

    Article  Google Scholar 

  38. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, K. et al. Practical blind image denoising via Swin-Conv-UNet and data synthesis. Mach. Intell. Res. 20, 822–836 (2023).

    Article  Google Scholar 

  42. Liu, Z. et al. Swin transformer: hierarchical vision transformer using shifted windows. In Proc. of the IEEE/CVF International Conference on Computer Vision (ed. O’Conner, L.) (IEEE, 2021).

  43. Li, T. et al. All-atom RNA structure determination from cryo-EM maps. Nat. Biotechnol. 43, 97–105 (2025).

    Article  PubMed  Google Scholar 

  44. Li, T., Cao, H., He, J. & Huang, S.-Y. Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps. Nat. Commun. 15, 9367 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DiMaio, F., Tyka, M. D., Baker, M. L., Chiu, W. & Baker, D. Refinement of protein structures into low-resolution density maps using Rosetta. J. Mol. Biol. 392, 181–190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, J., Li, T. & Huang, S.-Y. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat. Commun. 14, 3217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

    Article  PubMed  Google Scholar 

  48. Zhu, K., Su, H., Peng, Z. & Yang, J. A unified approach to protein domain parsing with inter-residue distance matrix. Bioinformatics 39, btad070 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods. 21, 110–116 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32161133002, 32430020 and 62072199 to S.-Y.H.), the startup grant of Huazhong University of Science and Technology (to S.-Y.H.) and the Postdoctoral Fellowship Program of the China Postdoctoral Science Fund (GZB20250617 to T.L.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Contributions

S.-Y.H. conceptualized and supervised the project. T.L., J.C., H.L. and H.C. designed and performed the experiments. S.-Y.H. and T.L analyzed the data. T.L. and S.-Y.H. wrote the paper. All authors reviewed and approved the final version of the paper.

Corresponding author

Correspondence to Sheng-You Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Sara Osman, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–6.

Source data

Source Data Fig. 2

Source data.

Source Data Fig. 4

Source data.

Source Data Fig. 6

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Chen, J., Li, H. et al. EMProt improves structure determination from cryo-EM maps. Nat Struct Mol Biol (2025). https://doi.org/10.1038/s41594-025-01723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41594-025-01723-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing