Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Determining chromatin architecture with Micro Capture-C

Abstract

Micro Capture-C (MCC) is a chromatin conformation capture (3C) method for visualizing reproducible three-dimensional contacts of specified regions of the genome at base pair resolution. These methods are an established family of techniques that use proximity ligation to assay the topology of chromatin. MCC can generate data at substantially higher resolution than previous techniques through multiple refinements of the 3C method. Using a sequence agnostic nuclease, the maintenance of cellular integrity and full sequencing of the ligation junctions, MCC achieves subnucleosomal levels of resolution, which can be used to reveal transcription factor binding sites analogous to DNAse I footprinting. Gene dense regions, close-range enhancer–promoter contacts, individual enhancers within super-enhancers and multiple other types of loci or regulatory regions that were previously challenging to assay with conventional 3C techniques, are readily observed using MCC. MCC requires training in common molecular biology techniques and bioinformatics to perform the experiment and analyze the data. The protocol can be expected to be completed in a 3 week timeframe for experienced molecular biologists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of MCC with other techniques at the Klf1 locus.
Fig. 2: Overview of experimental workflow.
Fig. 3: Data analysis.
Fig. 4: Expected results.

Similar content being viewed by others

Data availability

Sequencing data have been submitted to the National Center for Biotechnology Information Gene Expression Omnibus (GSE144336).

Code availability

The code required for analysis of MCC data are available for academic use through the Oxford University Innovation software store (https://process.innovation.ox.ac.uk/software/p/16529a/micro-capture-c-academic/1). A pipeline to run this code is available on GitHub (https://github.com/jojdavies/Micro-Capture-C). Instructions for setting up and running the pipeline are available on github.

References

  1. Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lam, M. T. Y., Li, W., Rosenfeld, M. G. & Glass, C. K. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2014.02.007 (2014).

  3. Arnould, C. et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590, 660–665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Jain, S., Ba, Z., Zhang, Y., Dai, H. Q. & Alt, F. W. CTCF-binding elements mediate accessibility of RAG substrates during chromatin scanning. Cell 174, 102–116.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J. M. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435–6445 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krumm, A. & Duan, Z. Understanding the 3D genome: emerging impacts on human disease. Semin. Cell Dev. Biol. 90, 62–77 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fortin, J. P. & Hansen, K. D. Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol. 16, 1–23 (2015).

    Article  CAS  Google Scholar 

  12. Falk, M. et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395–399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S, S. & P, F. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  Google Scholar 

  14. Hua, P. et al. Defining genome architecture at base-pair resolution. Nature 595, 125–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Aljahani, A. et al. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Nat. Commun. 13, 2139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lakadamyali, M. & Cosma, M. P. Visualizing the genome in high resolution challenges our textbook understanding. Nat. Methods 17, 371–379 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Beagrie, R. A. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies, J. O. J., Oudelaar, A. M., Higgs, D. R. & Hughes, J. R. How best to identify chromosomal interactions: a comparison of approaches. Nat. Methods 14, 125–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  20. Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biol. 17, 127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cullen, K. E., Kladde, M. P. & Seyfred, M. A. Interaction between transcription regulatory regions of prolactin chromatin. Science 261, 203–206 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Hagege, H. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2, 1722–1733 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Marbouty, M. et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol. Cell 59, 588–602 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, W. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat. Methods 12, 71–78 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ramani, V. et al. Mapping 3D genome architecture through in situ DNase Hi-C. Nat. Protoc. 11, 2104–2121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsieh, T. H. S. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hughes, J. R. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, Z. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Davies, J. O. J. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Downes, D. J. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale. Nat. Commun. 12, 531 (2021).

  33. Downes, D. J. et al. Capture-C: a modular and flexible approach for high-resolution chromosome conformation capture. Nat. Protoc. 17, 445–475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akgol Oksuz, B. et al. Systematic evaluation of chromosome conformation capture assays. Nat. Methods 18, 1046–1055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mieczkowski, J. et al. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat. Commun. 7, 11485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Galas, D. J. & Schmitz, A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aljahani, A. et al. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Nat. Commun. 13, 2139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie, T. et al. Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res. 13, 2621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. King, A. J. et al. Reactivation of a developmentally silenced embryonic globin gene. Nat. Commun. 12, 4439 (2021).

  42. The Severe Covid-19 GWAS Group. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N. Engl. J. Med. 383, 1522–1534 (2020).

  43. Downes, D. J. et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat. Genet. 53, 1606–1615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Bemmel, J. G. et al. The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat. Genet. 51, 1024–1034 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Monahan, K., Horta, A. & Lomvardas, S. Lhx2/Ldb1-mediated trans interactions regulate olfactory receptor choice. Nature 565, 448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rao, S. S. P. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, G. Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics 15, S11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fang, R. et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345–1348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mumbach, M. R. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwartzman, O. UMI-4C for quantitative and targeted chromosomal contact profiling. Nat. Methods 13, 685–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Andrey, G. et al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340, 1234167 (2013).

    Article  PubMed  Google Scholar 

  54. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Oudelaar, A. M. et al. Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nat. Commun. 11, 2722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mifsud, B. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Oudelaar, A. M., Downes, D., Davies, J. & Hughes, J. Low-input capture-C: a chromosome conformation capture assay to analyze chromatin architecture in small numbers of cells. Bio. Protoc. 7, e2645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Beagrie, R. A. et al. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights not captured by Hi-C. Preprint at bioRxiv https://doi.org/10.1101/2020.07.31.230284 (2020).

  60. Winick-Ng, W. et al. Cell-type specialization is encoded by specific chromatin topologies. Nature 599, 684–691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Quinodoz, S. A. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Owens, D. D. G. et al. Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development. Nat. Commun. 13, 773 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome https://doi.org/10.1186/s13059-015-0831-x (2015).

    Article  Google Scholar 

  67. Buckle, A., Gilbert, N., Marenduzzo, D. & Brackley, C. A. capC-MAP: software for analysis of Capture-C data. Bioinformatics https://doi.org/10.1093/bioinformatics/btz480 (2019).

    Article  PubMed  Google Scholar 

  68. Thongjuea, S., Stadhouders, R., Grosveld, F. G., Soler, E. & Lenhard, B. R3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res. 41, e132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, A. & Rue-Albrecht, K. sims-lab/CapCruncher. Zenodo https://doi.org/10.5281/zenodo.5113088 (2021).

    Article  Google Scholar 

  70. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Hentges, L. D., Sergeant, M. J., Downes, D. J., Hughes, J. R. & Taylor, S. LanceOtron: a deep learning peak caller for genome sequencing experiments. Bioinformatics 38, 4255–4263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oudelaar, A. M. et al. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50, 1744–1751 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cheng, L. et al. Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nat. Genet. 53, 869–880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.O.J.D. was supported by grants from Wellcome (098931/Z/12/Z and 225220/Z/22/Z); the MRC (MR/R008108/1 and MC_UU_00029/04); the NIHR Blood and Transplant Research Unit (NIHR203339) and the Oxford Biomedical Research Centre Genomic Medicine and Cell and Gene Therapy Themes (NIHR203311). J.C.H. is supported by an MRC studentship and N.D. was supported by an NIHR Academic Clinical Fellowship (ACF-2019-13-013).

Author information

Authors and Affiliations

Authors

Contributions

J.O.J.D. developed the method and wrote the first draft of the manuscript. J.C.H., H.L. and N.D. optimized the method and wrote the manuscript. D.D. optimized the capture methodology and contributed to the manuscript.

Corresponding author

Correspondence to James O. J. Davies.

Ethics declarations

Competing interests

J.O.J.D. is a co-founder of Nucleome Therapeutics and he provides consultancy to the company. He also holds a patent for the MCC method, which is licensed to the company.

Peer review

Peer review information

Nature Protocols thanks Argyris Papantonis and Vijay Ramani for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key papers using this protocol

Hua, P. et al. Nature 595, 125–129 (2021): https://doi.org/10.1038/s41586-021-03639-4

Aljahani, A. et al. Nat. Commun. 13, 2139 (2022): https://doi.org/10.1038/s41467-022-29696-5

Downes, D. J. et al. Nat. Genet. 53, 1606–1615 (2021): https://doi.org/10.1038/s41588-021-00955-3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamley, J.C., Li, H., Denny, N. et al. Determining chromatin architecture with Micro Capture-C. Nat Protoc 18, 1687–1711 (2023). https://doi.org/10.1038/s41596-023-00817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-023-00817-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing