Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Lymphatic collection and cell isolation from mouse models for multiomic profiling

An Author Correction to this article was published on 10 February 2025

This article has been updated

Abstract

Premetastatic cancer cells often spread from the primary lesion through the lymphatic vasculature and, clinically, the presence or absence of lymph node metastases impacts treatment decisions. However, little is known about cancer progression via the lymphatic system or of the effect that the lymphatic environment has on cancer progression. This is due, in part, to the technical challenge of studying lymphatic vessels and collecting lymph fluid. Here we provide a step-by-step procedure to collect both lymph and tumor-draining lymph in mouse models of cancer metastasis. This protocol has been adapted from established methods of lymph collection and was developed specifically for the collection of lymph from tumors. The approach involves the use of mice bearing melanoma or breast cancer orthotopic tumors. After euthanasia, the cisterna chyli and the tumor are exposed and viewed using a stereo microscope. Then, a glass cannula connected to a 1 mL syringe is inserted directly into the cisterna chyli or the tumor-draining lymphatics for collection of pure lymph. These lymph samples can be used to analyze the lymph-derived cancer cells using highly sensitive multiomics approaches to investigate the impact of the lymph environment during cancer metastasis. The procedure requires 2 h per mouse to complete and is suitable for users with minimal expertise in small animal handling and use of microsurgical tools under a stereo microscope.

Key points

  • The elevated pressure in the lymphatics around the tumor is leveraged for the collection of lymph from each tumor and the subsequent metabolic and lipidomic characterization using mass spectrometry, as well as lymph-derived cell characterization by flow cytometry.

  • Lymph can be alternatively collected by cannulating the thoracic duct; however, this requires surgery and specialized equipment, and has not been applied to tumor-draining lymphatics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protocol overview for lymph collection in tumor-bearing mice.
Fig. 2: Experiment set up.
Fig. 3: Detailed stages of the lymph collection from cisterna chyli.
Fig. 4: Anatomical variation of mouse cisterna chyli.
Fig. 5: Detailed stages of the lymph collection from tumor-draining lymphatic vessel.
Fig. 6: Application and anticipated results obtained after lymph collection.

Similar content being viewed by others

Data availability

The authors declare that the main data discussed in this protocol are available in the supporting primary research paper as ‘source data’ (https://doi.org/10.1038/s41586-020-2623-z). All photographic images shown in this manuscript are the original, unaltered photographs. The deidentified metabolomics heat map contains no source data, as it is provided as a representative example of the protocol application.

Change history

References

  1. Leong, S. P. et al. Clinical patterns of metastasis. Cancer Metastasis Rev. 25, 221–232 (2006).

    Article  PubMed  Google Scholar 

  2. Sleeman, J., Schmid, A. & Thiele, W. Tumor lymphatics. Semin. Cancer Biol. 19, 285–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Fink, D. M., Steele, M. M. & Hollingsworth, M. A. The lymphatic system and pancreatic cancer. Cancer Lett. 381, 217–236 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Padera, T. P., Meijer, E. F. & Munn, L. L. The lymphatic system in disease processes and cancer progression. Annu. Rev. Biomed. Eng. 18, 125–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amin, M., Greene, F., Edge, S. & Byrd, D. AJCC Cancer Staging Manual 8th edn (Springer, 2017).

  6. Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5, 28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rofstad, E. K., Galappathi, K. & Mathiesen, B. S. Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 16, 586–594 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Broggi, M. A. S. et al. Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J. Exp. Med. 216, 1091–1107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990).

    CAS  PubMed  Google Scholar 

  11. Rofstad, E. K. et al. Pulmonary and lymph node metastasis is associated with primary tumor interstitial fluid pressure in human melanoma xenografts. Cancer Res. 62, 661–664 (2002).

    CAS  PubMed  Google Scholar 

  12. Dadiani, M. et al. Real-time imaging of lymphogenic metastasis in orthotopic human breast cancer. Cancer Res. 66, 8037–8041 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hompland, T., Ellingsen, C., Ovrebo, K. M. & Rofstad, E. K. Interstitial fluid pressure and associated lymph node metastasis revealed in tumors by dynamic contrast-enhanced MRI. Cancer Res. 72, 4899–4908 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Reticker-Flynn, N. E. & Engleman, E. G. Lymph nodes: at the intersection of cancer treatment and progression. Trends Cell Biol. 33, 1021–1034 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pereira, E. R. et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359, 1408–1411 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Che Bakri, N. A. et al. Impact of axillary lymph node dissection and sentinel lymph node biopsy on upper limb morbidity in breast cancer patients: a systematic review and meta-analysis. Ann. Surg. 277, 572–580 (2023).

    Article  PubMed  Google Scholar 

  19. Xu, Z. Y. et al. Seizing the fate of lymph nodes in immunotherapy: to preserve or not? Cancer Lett. 588, 216740 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185, 1924–1942 e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, H. et al. Cancer immunotherapy responses persist after lymph node resection. Preprint at bioRxiv https://doi.org/10.1101/2023.09.19.558262 (2023).

  22. Karakousi, T., Mudianto, T. & Lund, A. W. Lymphatic vessels in the age of cancer immunotherapy. Nat. Rev. Cancer 24, 363–381 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Delclaux, I., Ventre, K. S., Jones, D. & Lund, A. W. The tumor-draining lymph node as a reservoir for systemic immune surveillance. Trends Cancer 10, 28–37 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng, H. et al. Impact of lymphadenectomy extent on immunotherapy efficacy in postresectional recurred non-small cell lung cancer: a multi-institutional retrospective cohort study. Int. J. Surg. 110, 238–252 (2024).

    PubMed  Google Scholar 

  26. Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502 e415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Prokhnevska, N. et al. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124 e105 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thorup, L., Hjortdal, A., Boedtkjer, D. B., Thomsen, M. B. & Hjortdal, V. The transport function of the human lymphatic system—a systematic review. Physiol. Rep. 11, e15697 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blatter, C. et al. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography. Sci. Rep. 6, 29035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bouta, E. M. et al. In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice. J. Physiol. 592, 1213–1223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwon, S. & Sevick-Muraca, E. M. Noninvasive quantitative imaging of lymph function in mice. Lymphat. Res. Biol. 5, 219–231 (2007).

    Article  PubMed  Google Scholar 

  34. Santambrogio, L. Immunology of The Lymphatic System 1st edn, Vol. 5 (Springer, 2013).

  35. Hall, J. & Hall, M. E. in Guyton and Hall Textbook of Medical Physiology 14th edn (Elsevier, 2021).

  36. Kawashima, Y., Sugimura, M., Hwang, Y. & Kudo, N. The lymph system in mice. Jpn J. Vet. Res. 12, 69–78 (1964).

    Google Scholar 

  37. Van den Broeck, W., Derore, A. & Simoens, P. Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J. Immunol. Methods 312, 12–19 (2006).

    Article  PubMed  Google Scholar 

  38. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Devilbiss, A. W. et al. Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues. eLife 10, e61980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shrewsbury, M. M. Thoracic duct lymph in unanesthetized mouse: method of collection, rate of flow and cell content. Proc. Soc. Exp. Biol. Med. 101, 492–494 (1959).

    Article  CAS  PubMed  Google Scholar 

  41. Gesner, B. M. & Gowans, J. L. The output of lymphocytes from the thoracic duct of unanaesthetized mice. Br. J. Exp. Pathol. 43, 424–430 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nagahashi, M. et al. Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods. Heliyon 2, e00219 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zawieja, D. C. et al. Lymphatic cannulation for lymph sampling and molecular delivery. J. Immunol. 203, 2339–2350 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith, A. J., Clutton, R. E., Lilley, E., Hansen, K. E. A. & Brattelid, T. PREPARE: guidelines for planning animal research and testing. Lab Anim. 52, 135–141 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. De Vleeschauwer, S. I. et al. OBSERVE: guidelines for the refinement of rodent cancer models. Nat. Protoc. 19, 2571–2596 (2024).

    Article  PubMed  Google Scholar 

  47. Festing, M. F. & Altman, D. G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 43, 244–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Dell, R. B., Holleran, S. & Ramakrishnan, R. Sample size determination. ILAR J. 43, 207–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Zolla, V. et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 14, 582–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fraser, R., Cliff, W. J. & Courtice, F. C. The effect of dietary fat load on the size and composition of chylomicrons in thoracic duct lymph. Q. J. Exp. Physiol. Cogn. Med. Sci. 53, 390–398 (1968).

    CAS  PubMed  Google Scholar 

  51. Ikeda, I., Tomari, Y. & Sugano, M. Interrelated effects of dietary fiber and fat on lymphatic cholesterol and triglyceride absorption in rats. J. Nutr. 119, 1383–1387 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Feldman, E. B. et al. Dietary saturated fatty acid content affects lymph lipoproteins: studies in the rat. J. Lipid Res. 24, 967–976 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Cifarelli, V. & Eichmann, A. The intestinal lymphatic system: functions and metabolic implications. Cell Mol. Gastroenterol. Hepatol. 7, 503–513 (2019).

    Article  PubMed  Google Scholar 

  54. Hablitz, L. M. et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 11, 4411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dakup, P. P., Porter, K. I., Little, A. A., Zhang, H. & Gaddameedhi, S. Sex differences in the association between tumor growth and T cell response in a melanoma mouse model. Cancer Immunol. Immunother. 69, 2157–2162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller, L. R. et al. Considering sex as a biological variable in preclinical research. FASEB J. 31, 29–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Zuurbier, C. J., Koeman, A., Houten, S. M., Hollmann, M. W. & Florijn, W. J. Optimizing anesthetic regimen for surgery in mice through minimization of hemodynamic, metabolic, and inflammatory perturbations. Exp. Biol. Med. 239, 737–746 (2014).

    Article  Google Scholar 

  58. Bachmann, S. B., Proulx, S. T., He, Y., Ries, M. & Detmar, M. Differential effects of anaesthesia on the contractility of lymphatic vessels in vivo. J. Physiol. 597, 2841–2852 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. P. Padera for insightful review and suggestions, which greatly improved the manuscript text. This work was supported by funding from the Breast Cancer Alliance Young Investigator Award, NIH/NCI 1R01CA282202, DF/HCC Incubator Award sponsored by the Ludwig Center at Harvard and the Melanoma Research Foundation Career Development Award.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and J.M.U. conceived the protocol. M.S. developed the lymph collection from cisterna chyli procedure. M.S. and J.M.U. developed the isolation of cancer cells from lymph procedure. A.S. and S.T. provided expertise and technical support for lymph collection. P.L., H.Z., M.O., L.M., and S.M. provided conceptual support and input on the manuscript content. J.M.U. provided anticipated results. M.S. and J.M.U. wrote the manuscript. All authors read and edited the manuscript.

Corresponding author

Correspondence to Jessalyn M. Ubellacker.

Ethics declarations

Ethics

All experiments were conducted in compliance with the approved Harvard T.H. Chan School of Public Health IACUC protocol IS00003460, and proper permission was granted for the publication of the included videos and images.

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Nathan Reticker-Flynn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key reference

Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020): https://doi.org/10.1038/s41586-020-2623-z

Supplementary information

Reporting Summary

Supplementary Video 1

Lymph collection from the cisterna chyli. The cisterna chyli is dried using a gauze pad and a cotton swab. Then, a glass cannula (attached to the 1 mL syringe/Luer/tubing apparatus, Fig. 2b) is slowly inserted into cisterna chyli. Lymph fluid is collected within the glass cannula by capillary action and gentle aspiration. The collected lymph is transferred into a cold 0.2 mL microcentrifuge tube. The cannula is inserted twice again to recover the entire lymph fluid coming out from the cisterna chyli and the lymph is transferred into the same cold 0.2 mL microcentrifuge tube.

Supplementary Video 2

Visualization of the tumor-draining lymphatics. The focus is made on the cranial section of the subcutaneous B16 melanoma tumor from a C57BL/6J female mouse. The tumor-draining blood vessel that goes from the tumor to the axillary region is identified. The tumor-training lymph vessel is commonly located close to the tumor-draining blood vessel and can be differentiated by is white/translucent color. A snapshot highlighting in yellow both the tumor-draining blood and lymph vessels appears at t = 18 s and is represented in Fig. 5d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatier, M., Solanki, A., Thangaswamy, S. et al. Lymphatic collection and cell isolation from mouse models for multiomic profiling. Nat Protoc 20, 884–901 (2025). https://doi.org/10.1038/s41596-024-01081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01081-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer