Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Upconversion particle-based optical tweezers for sensing applications

Abstract

Optical tweezers use focused laser beams to manipulate small particles, primarily for force sensing. Recent advances in nanoscale-trapping approaches have enabled the development of multiplexed sensing applications, such as temperature and viscosity detection. Upconversion particles (UCPs) and, in particular, lanthanide-doped nano-/micro-crystals (~6 nm to 6 μm) exhibit particular anti-Stokes emission properties, which facilitate their visualization when trapped and the detection of changes to their properties based on temperature and orientation. Their ion resonance enhances the trapping force, enabling the manipulation of smaller particles and their use for force sensing. Here we provide step-by-step instructions to build UCP-based holographic optical tweezers systems, including super-resolved photonic force microscopy and fluorescence optical tweezers. We detail the characterization of the setup for subfemtonewton-scale force sensing and include nanoprobe functionalization, force sensitivity validation and comparison with known forces. We further include the procedures for temperature and viscosity sensing, such as calibrating polarized spectra, initiating UCP rotation and analyzing viscosity via spectral fluctuations. Applications, including nanoparticle-DNA-coated gold film interactions and temperature distribution near single cells, are shown as well. The procedure typically requires 6 days to complete and is suitable for users with expertise in photonics.

Key points

  • The procedure describes the use of lanthanide ion-doped upconversion particles, trapped and excited using a 980 nm laser and detected using a high-speed scientific complementary metal–oxide–semiconductor camera, a spectrometer, an optical astigmatism component and a machine-learning-aided three-dimensional localization algorithm to construct the super-resolved fluorescence optical tweezers.

  • The Protocol enables subfemtonewton-level force sensing, intracellular viscosity measurements and local temperature sensing, supporting research including subcellular environment measuring and biomolecular long-distance interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The schematic of the single-gradient optical tweezers system.
Fig. 2: The schematic and actual experimental setup photograph of the super-resolved photonic force microscope.
Fig. 3: LUT measurement system characterization.
Fig. 4: An example of ring mask for finding the pupil size of objective lens.
Fig. 5: The schematic of the optical system for coupling a spectrometer to the optical tweezer system.
Fig. 6: Optical trapping of a single upconverting nanoparticle.
Fig. 7: Rotated upconverting microparticle and its corresponding spectral changes.
Fig. 8: Upconverting nanoparticle under Brownian angular fluctuation and its spectral changes.
Fig. 9: Spectral response at different temperatures.
Fig. 10: Validation of force sensitivity at the nanoscale.
Fig. 11: Force sensing on a single UCNP.
Fig. 12: Interaction force sensing between UCNP and DNA-functionalized Au surface.
Fig. 13: Results of viscosity sensing obtained from rotated UCMPs and angularly fluctuating UCNPs.
Fig. 14: Results of extracellular thermal scanning enabled by a single upconverting microparticle.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. Other relevant data are available from the corresponding authors upon reasonable request.

Code availability

All the custom codes are available from the corresponding authors upon reasonable request.

References

  1. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  CAS  Google Scholar 

  2. Selhuber-Unkel, C., Zins, I., Schubert, O., Sönnichsen, C. & Oddershede, L. B. Quantitative optical trapping of single gold nanorods. Nano Lett. 8, 2998–3003 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Pelton, M. et al. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt. Lett. 31, 2075–2077 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, F. et al. Nonlinear optical processes in optically trapped InP nanowires. Nano Lett. 11, 4149–4153 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Reece, P. J. et al. Characterization of semiconductor nanowires using optical tweezers. Nano Lett. 11, 2375–2381 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nat. Nanotechnol. 8, 175–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Shan, X. et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat. Nanotechnol. 16, 531–537 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Shan, X. et al. Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy. Nat. Photon. 18, 913–921 (2024).

    Article  CAS  Google Scholar 

  9. Perrella, C. & Dholakia, K. A material change for ultra-high precision force sensing. Light Sci. Appl. 13, 272–274 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pauzauskie, P. J. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater. 5, 97–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807–819 (2013).

    Article  PubMed  Google Scholar 

  12. Gao, D. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Volpe, G. et al. Roadmap for optical tweezers. J. Phys. Photonics 5, 022501 (2023).

    Article  Google Scholar 

  14. Kumar, B. et al. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Anal. Chem. 139, 116256 (2021).

    Article  CAS  Google Scholar 

  15. Patel, M., Meenu, M., Pandey, J. K., Kumar, P. & Patel, R. Recent development in upconversion nanoparticles and their application in optogenetics: a review. J. Rare Earths 40, 847–861 (2022).

    Article  CAS  Google Scholar 

  16. Tsang, M. K. et al. Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10, 598–605 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Esmaeili, S. et al. Quantum-enhanced detection of viral cDNA via luminescence resonance energy transfer using upconversion and gold nanoparticles. Nanophotonics 663, 1–12 (2025).

    Google Scholar 

  18. Dong, H., Sun, L. D. & Yan, C. H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 44, 1608–1634 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photon. 6, 560–564 (2012).

    Article  CAS  Google Scholar 

  20. Chen, C. et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun. 9, 3290–3295 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, Y. et al. Super-resolution mapping of single nanoparticles inside tumor spheroids. Small 16, 1905572 (2020).

    Article  CAS  Google Scholar 

  22. Ding, L. et al. Optical nonlinearity enabled super-resolved multiplexing microscopy. Adv. Mater. 36, 1–9 (2024).

    Article  Google Scholar 

  23. Dubey, N. & Chandra, S. Upconversion nanoparticles: recent strategies and mechanism based applications. J. Rare Earths 40, 1343–1359 (2022).

    Article  CAS  Google Scholar 

  24. Casar, J. R. et al. Upconverting microgauges reveal intraluminal force dynamics in vivo. Nature 637, 76–83 (2025).

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Sevilla, P., Arita, Y., Liu, X., Jaque, D. & Dholakia, K. The temperature of an optically trapped, rotating microparticle. ACS Photonics 5, 3772–3778 (2018).

    Article  Google Scholar 

  26. Rodríguez-Sevilla, P. et al. Optical torques on upconverting particles for intracellular microrheometry. Nano Lett. 16, 8005–8014 (2016).

    Article  PubMed  Google Scholar 

  27. Lee, W. M., Reece, P. J., Marchington, R. F., Metzger, N. K. & Dholakia, K. Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc. 2, 3226–3238 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Di, X. et al. Probing the nanonewton mitotic cell deformation force by ion-resonance-enhanced photonics force microscopy. Nano Lett. 24, 14004–14011 (2024).

    Article  CAS  PubMed  Google Scholar 

  29. Bi, G., Wu, B., Teng, Y., Zhou, S. & Qiu, J. Ultrasensitive polarized up-conversion of Tm3+–Yb3+ doped β‑NaYF4 single nanorod. Nano Lett. 3, 2241–2246 (2013).

    Google Scholar 

  30. Rodríguez-Sevilla, P. et al. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy. Nanoscale 8, 300–308 (2016).

    Article  PubMed  Google Scholar 

  31. Wang, C., Jin, Y., Zhang, R., Yao, Q. & Hu, Y. A review and outlook of ratiometric optical thermometer based on thermally coupled levels and non-thermally coupled levels. J. Alloy. Compd. 894, 162494–162515 (2022).

    Article  CAS  Google Scholar 

  32. Liu, J., Zheng, M., Xiong, Z. J. & Li, Z. Y. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron. Adv. 4, 200015 (2021).

    Article  CAS  Google Scholar 

  33. Zhang, T. et al. Light-armed nitric oxide-releasing micromotor in vivo. Nano Lett. 24, 12452–12460 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Gong, Z. et al. Upconversion nanoparticle decorated spider silks as single-cell thermometers. Nano Lett. 21, 1469–1476 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Rodríguez-Rodríguez, H. et al. Enhancing optical forces on fluorescent up-converting nanoparticles by surface charge tailoring. Small 11, 1555–1561 (2015).

    Article  PubMed  Google Scholar 

  36. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng, B. et al. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 122, 5519–5603 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, J., Wu, J., Wei, W., Zhang, Y. & Chen, Q. Upconversion nanoparticles based sensing: from design to point-of-care testing. Small 20, 2311729 (2024).

    Article  CAS  Google Scholar 

  39. Wen, S. et al. Advances in highly doped upconversion nanoparticles. Nat. Commun. 9, 2415–2426 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Würth, C., Fischer, S., Grauel, B., Alivisatos, A. P. & Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 140, 4922–4928 (2018).

    Article  PubMed  Google Scholar 

  41. Wiesholler, L. M. et al. Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation. Nanoscale 11, 13440–13449 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Peterman, E. J. G., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mao, H., Arias-Gonzalez, J. R., Smith, S. B., Tinoco, I. & Bustamante, C. Temperature control methods in a laser tweezers system. Biophys. J. 89, 1308–1316 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

  45. Xia, X. et al. The impact of 2H9/24I13/2 emission from Er3+ ions on ratiometric optical temperature sensing with Yb3+/Er3+ co-doped upconversion materials. J. Lumin. 236, 118006–118011 (2021).

    Article  CAS  Google Scholar 

  46. Cho, Y. et al. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+,Er3+ phosphors. Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Lu, D. et al. Thermoresponsive polymeric nanolenses magnify the thermal sensitivity of single upconverting nanoparticles. Small 18, 2202452 (2022).

    Article  CAS  Google Scholar 

  48. Ortiz-Rivero, E. et al. Unlocking single-particle multiparametric sensing: decoupling temperature and viscosity readouts through upconverting polarized spectroscopy. Small Methods 9, 2400718 (2025).

    Article  CAS  PubMed  Google Scholar 

  49. Rodríguez-Sevilla, P. et al. Upconverting nanorockers for intracellular viscosity measurements during chemotherapy. Adv. Biosyst. 3, 1900082 (2019).

    Article  Google Scholar 

  50. Rodríguez-Sevilla, P. et al. Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv. Mater. 28, 2421–2426 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 62275010, 62405015 and U23A20481), the Beijing Natural Science Foundation (grant no. 1232027). This work was also financed by grant nos. PID2023-146775OB-I00 and PID2023-151078OB-I00, grant no. CNS2022-135495 funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR, by the Comunidad Autónoma de Madrid (grant no. S2022/BMD-7403 RENIM-CM) and cofinanced by the European structural and investment fund. F.Z. acknowledges the scholarship from the China Scholarship Council (grant no. 202108440235). F.Z., P.H.-G. and D.J. thank P. Rodríguez Sevilla and E. Ortiz Rivero for their past contributions to Nanomaterials Bioimaging Group. T.Z., X.S. and F.W. thank L. Ding and D. Wang for their contributions to Fan Lab. We acknowledge equipment support from the Analysis and Testing Center in Beihang University, Beijing.

Author information

Authors and Affiliations

Authors

Contributions

F.W., D.J., P.H. and X.S. designed and implemented the fabrication protocol. F.W., D.J. and X.S designed the optical setup for optical tweezers. T.Z. contributed to the experimental work shown in this Protocol. T.Z. and F.Z. contributed to the visualization, collection and adaptation of the figures. T.Z., F.Z., X.S., P.H., D.J. and F.W. wrote the Protocol. F.W. and D.J. supervised the study and the manuscript preparation. All authors reviewed and edited the manuscript and approved the final version.

Corresponding authors

Correspondence to Xuchen Shan, Patricia Haro-González, Daniel Jaque or Fan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Ye Pu and Shi-Wei Chu and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Shan, X. et al. Nat. Nanotechnol. 16, 531–537 (2021): https://doi.org/10.1038/s41565-021-00852-0

Shan, X. et al. Nat. Photon. 18, 913–921 (2024): https://doi.org/10.1038/s41566-024-01462-7

Rodríguez-Sevilla, P. et al. Adv. Biosys. 3, 1900082 (2019): https://onlinelibrary.wiley.com/doi/10.1002/adbi.201900082

Ortiz-Rivero, E. et al. Small Methods 9, 2400718 (2025): https://doi.org/10.1002/smtd.202400718

Supplementary information

Supplementary Information

(1): laser-induced temperature increases in the optical trap. (2): scanning electron microscope images of hexagonal upconverting particles. (3): polarized emission from a single β-NaYF4:Yb3+,Er3+ upconverting particle

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, F., Shan, X. et al. Upconversion particle-based optical tweezers for sensing applications. Nat Protoc (2026). https://doi.org/10.1038/s41596-025-01264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01264-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing