Table 1 Performance metrics and training configurations of different AI models used for dental caries detection, detailing the model names, number of epochs, batch sizes, GPUs utilized, evaluation metrics, and optimization algorithms.

From: Annotated intraoral image dataset for dental caries detection

Model Name

No. of epoch

Batch size

GPU

Metrics

Optimizer

Rank (Avg)

YOLOv5s

204

32

Nvidia RTX 4090 24GB

Precision = 0.768, Recall = 0.743, mAP @ 0.5 IoU = 0.78

Adam

2.67

YOLOv8s

164

64

Nvidia RTX 4090 24GB

Precision = 0.828, Recall = 0.807, mAP @ 0.5 IoU = 0.841

Adam

1.0

YOLO11s

225

64

Nvidia RTX 4090 24GB

Precision = 0.776, Recall = 0.735, mAP @ 0.5 IoU = 0.812

Adam

2.33

SSD-MobileNet-v2-FPNLite-320

5000 steps

16

T4 (15.0 GB) Colab

mAP @ 0.5 IoU = 0.68

RMSprop

4.9

FasterRCNN

3000 steps

8

T4 (15.0 GB) Colab

Recall = 0.461, mAP @ 0.5 IoU = 0.306

SGD

4.5

  1. YOLOv5s: You Only Look Once versions 5, YOLOv8s: You Only Look Once version 8, YOLOv11: You Only Look Once version 11, Faster R-CNN: Faster Region-Convolutional Neural Network, Map: Mean Average Precision, GPU: Graphical Processing Unit, SGD: Stochastic Gradient Descent, Adam: Adaptive Moment Estimation, IoU: Intersection over Union.