Table 1 Performance metrics and training configurations of different AI models used for dental caries detection, detailing the model names, number of epochs, batch sizes, GPUs utilized, evaluation metrics, and optimization algorithms.
From: Annotated intraoral image dataset for dental caries detection
Model Name | No. of epoch | Batch size | GPU | Metrics | Optimizer | Rank (Avg) |
|---|---|---|---|---|---|---|
YOLOv5s | 204 | 32 | Nvidia RTX 4090 24GB | Precision = 0.768, Recall = 0.743, mAP @ 0.5 IoU = 0.78 | Adam | 2.67 |
YOLOv8s | 164 | 64 | Nvidia RTX 4090 24GB | Precision = 0.828, Recall = 0.807, mAP @ 0.5 IoU = 0.841 | Adam | 1.0 |
YOLO11s | 225 | 64 | Nvidia RTX 4090 24GB | Precision = 0.776, Recall = 0.735, mAP @ 0.5 IoU = 0.812 | Adam | 2.33 |
SSD-MobileNet-v2-FPNLite-320 | 5000 steps | 16 | T4 (15.0 GB) Colab | mAP @ 0.5 IoU = 0.68 | RMSprop | 4.9 |
FasterRCNN | 3000 steps | 8 | T4 (15.0 GB) Colab | Recall = 0.461, mAP @ 0.5 IoU = 0.306 | SGD | 4.5 |