Abstract
This work presents three open datasets featuring various levels of processing, containing neural recordings from the auditory cortex of rats. These recordings were obtained during experiments using the auditory oddball paradigm before, during and after the local microiontophoretic application of acetylcholine. The primary objective of these datasets is to investigate how the brain processes predictable versus unexpected auditory stimuli, and the role of cholinergic inputs during such processing. The data include multi-unit recordings of neuronal activity during the presentation of standard and deviant tones, classified by stimulus type and cortical sub-region. These resources enable quantitative investigations of deviance detection, stimulus-specific adaptation, cholinergic modulation and predictive-coding mechanisms at multiple temporal scales.
Similar content being viewed by others
Data availability
The datasets are provided in CSV format and are available for download on Figshare at https://doi.org/10.6084/m9.figshare.3013250240 and on GitHub at https://github.com/Vazquez-Borsetti/oddball-paradigm-in-the-auditory-cortex-an-open-dataset41. The raw, unprocessed data of the recordings is available at https://doi.org/10.12751/g-node.k9t4b542, including measurements of the quality of the recordings.
Code availability
The programs for preprocessing, data analysis, and graph generation were developed in-house using Python. The Python code was written using Python 3.9 (Python Software Foundation, https://www.python.org/). All necessary libraries (including NumPy, Pandas, Matplotlib, and Seaborn) were installed via the Anaconda distribution, and the code was primarily developed using the Spyder IDE (Integrated Development Environment). Both the database and the complete code used for the analysis are available through the link to the GitHub repository dedicated to this publication41.
References
Malmierca, M. S. Auditory System. in The Rat Nervous System (ed. Paxinos, G.) 865–946, https://doi.org/10.1016/B978-0-12-374245-2.00029-2 (Elsevier, 2015)..
Nelken, I. Processing of complex sounds in the auditory system. Curr Opin Neurobiol 18, 413–417, https://doi.org/10.1016/j.conb.2008.08.014 (2008).
Schreiner, C. E. & Winer, J. A. Auditory Cortex Mapmaking: Principles, Projections, and Plasticity. Neuron 56, 356–365, https://doi.org/10.1016/j.neuron.2007.10.013 (2007).
Froemke, R. C. & Schreiner, C. E. Synaptic plasticity as a cortical coding scheme. Curr Opin Neurobiol 35, 185–199, https://doi.org/10.1016/j.conb.2015.10.003 (2015).
Kuchibhotla, K. V. et al. Parallel processing by cortical inhibition enables context-dependent behavior. Nat Neurosci 20, 62–71, https://doi.org/10.1038/nn.4436 (2017).
Hasselmo, M. E. & McGaughy, J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog Brain Res 145, 207–231, https://doi.org/10.1016/S0079-6123(03)45015-2 (2004).
Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 48, 98–111,https://doi.org/10.1016/j.brainresrev.2004.08.006 (2005).
Chavez, C. & Zaborszky, L. Basal Forebrain Cholinergic–Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb. Cortex 27(3), 2335–2347, https://doi.org/10.1093/cercor/bhw091 (2016).
Mesulam, M.-M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease. J. Comp. Neurol. 521, 4124–4144, https://doi.org/10.1002/cne.23415 (2013).
Zaborszky, L. et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. NeuroImage 42, 1127–1141, https://doi.org/10.1016/j.neuroimage.2008.05.055 (2008).
Näätänen, R. Attention and Brain Function. https://doi.org/10.4324/9780429487354 (Routledge, 1992).
Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138, https://doi.org/10.1038/nrn2787 (2010).
Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87, https://doi.org/10.1038/4580 (1999).
Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain. Sci. 36, 181–204, https://doi.org/10.1017/S0140525X12000477 (2013).
Winkler, I. & Schröger, E. Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain Lang. 148, 1–22, https://doi.org/10.1016/j.bandl.2015.05.003 (2015).
Parr, T. & Friston, K. J. Uncertainty, epistemics and active inference. J. R. Soc. Interface. 14, 20170376, https://doi.org/10.1098/rsif.2017.0376 (2017).
Yu, A. J. & Dayan, P. Uncertainty, Neuromodulation, and Attention. Neuron 46, 681–692, https://doi.org/10.1016/j.neuron.2005.04.026 (2005).
Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398, https://doi.org/10.1038/nn1032 (2003).
Ulanovsky, N., Las, L., Farkas, D. & Nelken, I. Multiple Time Scales of Adaptation in Auditory Cortex Neurons. J. Neurosci. 24, 10440–10453, https://doi.org/10.1523/jneurosci.1905-04.2004 (2004).
Duque, D., Pérez-González, D., Ayala, Y. A., Palmer, A. R. & Malmierca, M. S. Topographic Distribution, Frequency, and Intensity Dependence of Stimulus-Specific Adaptation in the Inferior Colliculus of the Rat. J. Neurosci. 32, 17762–17774, https://doi.org/10.1523/jneurosci.3190-12.2012 (2012).
Malmierca, M. S., Cristaudo, S., Pérez-González, D. & Covey, E. Stimulus-Specific Adaptation in the Inferior Colliculus of the Anesthetized Rat. J. Neurosci. 29, 5483–5493, https://doi.org/10.1523/jneurosci.4153-08.2009 (2009).
Parras, G. G., Carbajal, G. V., Valdés-Baizabal, C., Escera, C. & Malmierca, M. S. Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nat. Comm. 8, 2148, https://doi.org/10.1038/s41467-017-02038-6 (2017).
Carbajal, G. V., Casado-Román, L. & Malmierca, M. S. Two Prediction Error Systems in the Nonlemniscal Inferior Colliculus: Spectral and Nonspectral. J. Neurosci. 44, e1420232024, https://doi.org/10.1523/jneurosci.1420-23.2024 (2024).
Carbajal, G. V. & Malmierca, M. S. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear. 22, 2331216518784822, https://doi.org/10.1177/2331216518784822 (2018).
Carbajal, G. V. & Malmierca, M. S. Novelty Processing in the Auditory System: Detection, Adaptation or Expectation? in The Senses: A Comprehensive Reference 749–776, https://doi.org/10.1016/B978-0-12-809324-5.24154-0 (Elsevier, 2020).
Malmierca, M. S. et al. Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus. NeuroImage 184, 889–900, https://doi.org/10.1016/J.NEUROIMAGE.2018.10.012 (2019).
Letzkus, J. J., Wolff, S. B. E. & Lüthi, A. Disinhibition, a Circuit Mechanism for Associative Learning and Memory. Neuron 88, 264–276, https://doi.org/10.1016/j.neuron.2015.09.024 (2015).
Eggermann, E. & Feldmeyer, D. Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. Proc. Natl. Acad. Sci. USA 106, 11753–11758, https://doi.org/10.1073/pnas.0810062106 (2009).
Hasselmo, M. E. & Sarter, M. Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition. Neuropsychopharmacol. 36, 52–73, https://doi.org/10.1038/npp.2010.104 (2011).
Hasselmo, M. E. & Giocomo, L. M. Cholinergic Modulation of Cortical Function. J. Mol. Neurosci. 30, 133–136, https://doi.org/10.1385/JMN:30:1:133 (2006).
Bastos, A. M., Usrey, W., Adams, R., Mangun., G., Fries, P. & Friston, K. Canonical Microcircuits for Predictive Coding. Neuron 76, 695–711, https://doi.org/10.1016/j.neuron.2012.10.038 (2012).
Picciotto, M. R., Higley, M. J. & Mineur, Y. S. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron 76, 116–129, https://doi.org/10.1016/j.neuron.2012.08.036 (2012).
Rauschecker, J. P., Leaver, A. M. & Mühlau, M. Tuning Out the Noise: Limbic-Auditory Interactions in Tinnitus. Neuron 66, 819–826, https://doi.org/10.1016/j.neuron.2010.04.032 (2010).
Stephan, K. E., Friston, K. J. & Frith, C. D. Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of Self-monitoring. Schizophr. Bull. 35, 509–527, https://doi.org/10.1093/schbul/sbn176 (2009).
Pérez-González, D., Lao-Rodríguez, A. B., Aedo-Sánchez, C. & Malmierca, M. S. Acetylcholine modulates the precision of prediction error in the auditory cortex. eLife 12, RP91475, https://doi.org/10.7554/eLife.91475 (2024).
Nieto-Diego, J. & Malmierca, M. S. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat. PLoS Biol. 14, e1002397, https://doi.org/10.1371/journal.pbio.1002397 (2016).
Ayala, Y. A. & Malmierca, M. S. Cholinergic Modulation of Stimulus-Specific Adaptation in the Inferior Colliculus. J. Neurosci. 35, 12261–12272, https://doi.org/10.1523/jneurosci.0909-15.2015 (2015).
Farley, G. R., Morley, B. J., Javel, E. & Gorga, M. P. Single-unit responses to cholinergic agents in the rat inferior colliculus. Hear. Res. 11, 73–91, https://doi.org/10.1016/0378-5955(83)90046-1 (1983).
Habbicht, H. & Vater, M. A microiontophoretic study of acetylcholine effects in the inferior colliculus of horseshoe bats: implications for a modulatory role. Brain Res. 724, 169–179, https://doi.org/10.1016/0006-8993(96)00224-7 (1996) .
Vázquez-Borsetti, P., Malmierca, M. S. & Pérez-González, D. Oddball paradigm in the auditory cortex: an open dataset. Figshare https://doi.org/10.6084/m9.figshare.30132502 (2025).
Vázquez-Borsetti, P., Malmierca, M. S. & Pérez-González, D. Oddball paradigm in the auditory cortex: an open dataset. GitHub https://github.com/Vazquez-Borsetti/oddball-paradigm-in-the-auditory-cortex-an-open-dataset (2025).
Vázquez-Borsetti, P., Malmierca, M. S. & Pérez-González, D. Raw multi-unit recordings from rat auditory cortex during oddball paradigm experiments. G-Node https://doi.org/10.12751/g-node.k9t4b5 (2025).
Acknowledgements
This work was supported by project PID2023-148541OB-I00, funded by MICIU/AEI (https://doi.org/10.13039/501100011033) and FEDER EU, awarded to M.S.M. and D.P.G.; and the Fundación Ramón Areces (grant CIVP20A6616), the Consejería de Educación, Junta de Castilla y León (SA218P23), and the strategic research programs of excellence from the Regional Government of Castile and León, co-funded by the ERDF Operational Programme (ref. CLU-2023-1-01), awarded to M.S.M.
Author information
Authors and Affiliations
Contributions
Pablo Vázquez-Borsetti: Software, Validation, Formal analysis, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization. Ana B. Lao-Rodríguez: Investigation, Writing - Review & Editing. Manuel S. Malmierca: Writing - Review & Editing, Supervision, Funding acquisition. David Pérez-González: Conceptualization, Data Curation, Writing - Review & Editing, Funding acquisition.
Corresponding author
Ethics declarations
Competing interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Vázquez-Borsetti, P., Lao-Rodríguez, A.B., Malmierca, M.S. et al. Dataset of Oddball Paradigm experiment in the Auditory Cortex and the effect of acetylcholine. Sci Data (2026). https://doi.org/10.1038/s41597-025-06484-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-025-06484-6


