Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Dataset of Oddball Paradigm experiment in the Auditory Cortex and the effect of acetylcholine
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 10 January 2026

Dataset of Oddball Paradigm experiment in the Auditory Cortex and the effect of acetylcholine

  • Pablo Vázquez-Borsetti  ORCID: orcid.org/0000-0002-5974-57071,
  • Ana B. Lao-Rodríguez  ORCID: orcid.org/0000-0002-4093-01602,3,4,
  • Manuel S. Malmierca  ORCID: orcid.org/0000-0003-0168-75722,3,4 &
  • …
  • David Pérez-González  ORCID: orcid.org/0000-0001-6288-26922,3,5 

Scientific Data , Article number:  (2026) Cite this article

  • 1282 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cortex
  • Neurophysiology
  • Perception

Abstract

This work presents three open datasets featuring various levels of processing, containing neural recordings from the auditory cortex of rats. These recordings were obtained during experiments using the auditory oddball paradigm before, during and after the local microiontophoretic application of acetylcholine. The primary objective of these datasets is to investigate how the brain processes predictable versus unexpected auditory stimuli, and the role of cholinergic inputs during such processing. The data include multi-unit recordings of neuronal activity during the presentation of standard and deviant tones, classified by stimulus type and cortical sub-region. These resources enable quantitative investigations of deviance detection, stimulus-specific adaptation, cholinergic modulation and predictive-coding mechanisms at multiple temporal scales.

Similar content being viewed by others

Change detection in the primate auditory cortex through feedback of prediction error signals

Article Open access 13 November 2023

Audiovisual adaptation is expressed in spatial and decisional codes

Article Open access 07 July 2022

Novelty detection in an auditory oddball task on freely moving rats

Article Open access 19 October 2023

Data availability

The datasets are provided in CSV format and are available for download on Figshare at https://doi.org/10.6084/m9.figshare.3013250240 and on GitHub at https://github.com/Vazquez-Borsetti/oddball-paradigm-in-the-auditory-cortex-an-open-dataset41. The raw, unprocessed data of the recordings is available at https://doi.org/10.12751/g-node.k9t4b542, including measurements of the quality of the recordings.

Code availability

The programs for preprocessing, data analysis, and graph generation were developed in-house using Python. The Python code was written using Python 3.9 (Python Software Foundation, https://www.python.org/). All necessary libraries (including NumPy, Pandas, Matplotlib, and Seaborn) were installed via the Anaconda distribution, and the code was primarily developed using the Spyder IDE (Integrated Development Environment). Both the database and the complete code used for the analysis are available through the link to the GitHub repository dedicated to this publication41.

References

  1. Malmierca, M. S. Auditory System. in The Rat Nervous System (ed. Paxinos, G.) 865–946, https://doi.org/10.1016/B978-0-12-374245-2.00029-2 (Elsevier, 2015)..

  2. Nelken, I. Processing of complex sounds in the auditory system. Curr Opin Neurobiol 18, 413–417, https://doi.org/10.1016/j.conb.2008.08.014 (2008).

    Google Scholar 

  3. Schreiner, C. E. & Winer, J. A. Auditory Cortex Mapmaking: Principles, Projections, and Plasticity. Neuron 56, 356–365, https://doi.org/10.1016/j.neuron.2007.10.013 (2007).

    Google Scholar 

  4. Froemke, R. C. & Schreiner, C. E. Synaptic plasticity as a cortical coding scheme. Curr Opin Neurobiol 35, 185–199, https://doi.org/10.1016/j.conb.2015.10.003 (2015).

    Google Scholar 

  5. Kuchibhotla, K. V. et al. Parallel processing by cortical inhibition enables context-dependent behavior. Nat Neurosci 20, 62–71, https://doi.org/10.1038/nn.4436 (2017).

    Google Scholar 

  6. Hasselmo, M. E. & McGaughy, J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog Brain Res 145, 207–231, https://doi.org/10.1016/S0079-6123(03)45015-2 (2004).

  7. Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 48, 98–111,https://doi.org/10.1016/j.brainresrev.2004.08.006 (2005).

    Google Scholar 

  8. Chavez, C. & Zaborszky, L. Basal Forebrain Cholinergic–Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb. Cortex 27(3), 2335–2347, https://doi.org/10.1093/cercor/bhw091 (2016).

  9. Mesulam, M.-M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease. J. Comp. Neurol. 521, 4124–4144, https://doi.org/10.1002/cne.23415 (2013).

    Google Scholar 

  10. Zaborszky, L. et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. NeuroImage 42, 1127–1141, https://doi.org/10.1016/j.neuroimage.2008.05.055 (2008).

    Google Scholar 

  11. Näätänen, R. Attention and Brain Function. https://doi.org/10.4324/9780429487354 (Routledge, 1992).

  12. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138, https://doi.org/10.1038/nrn2787 (2010).

    Google Scholar 

  13. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87, https://doi.org/10.1038/4580 (1999).

    Google Scholar 

  14. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain. Sci. 36, 181–204, https://doi.org/10.1017/S0140525X12000477 (2013).

    Google Scholar 

  15. Winkler, I. & Schröger, E. Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain Lang. 148, 1–22, https://doi.org/10.1016/j.bandl.2015.05.003 (2015).

    Google Scholar 

  16. Parr, T. & Friston, K. J. Uncertainty, epistemics and active inference. J. R. Soc. Interface. 14, 20170376, https://doi.org/10.1098/rsif.2017.0376 (2017).

    Google Scholar 

  17. Yu, A. J. & Dayan, P. Uncertainty, Neuromodulation, and Attention. Neuron 46, 681–692, https://doi.org/10.1016/j.neuron.2005.04.026 (2005).

    Google Scholar 

  18. Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398, https://doi.org/10.1038/nn1032 (2003).

    Google Scholar 

  19. Ulanovsky, N., Las, L., Farkas, D. & Nelken, I. Multiple Time Scales of Adaptation in Auditory Cortex Neurons. J. Neurosci. 24, 10440–10453, https://doi.org/10.1523/jneurosci.1905-04.2004 (2004).

    Google Scholar 

  20. Duque, D., Pérez-González, D., Ayala, Y. A., Palmer, A. R. & Malmierca, M. S. Topographic Distribution, Frequency, and Intensity Dependence of Stimulus-Specific Adaptation in the Inferior Colliculus of the Rat. J. Neurosci. 32, 17762–17774, https://doi.org/10.1523/jneurosci.3190-12.2012 (2012).

    Google Scholar 

  21. Malmierca, M. S., Cristaudo, S., Pérez-González, D. & Covey, E. Stimulus-Specific Adaptation in the Inferior Colliculus of the Anesthetized Rat. J. Neurosci. 29, 5483–5493, https://doi.org/10.1523/jneurosci.4153-08.2009 (2009).

    Google Scholar 

  22. Parras, G. G., Carbajal, G. V., Valdés-Baizabal, C., Escera, C. & Malmierca, M. S. Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nat. Comm. 8, 2148, https://doi.org/10.1038/s41467-017-02038-6 (2017).

    Google Scholar 

  23. Carbajal, G. V., Casado-Román, L. & Malmierca, M. S. Two Prediction Error Systems in the Nonlemniscal Inferior Colliculus: Spectral and Nonspectral. J. Neurosci. 44, e1420232024, https://doi.org/10.1523/jneurosci.1420-23.2024 (2024).

    Google Scholar 

  24. Carbajal, G. V. & Malmierca, M. S. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear. 22, 2331216518784822, https://doi.org/10.1177/2331216518784822 (2018).

    Google Scholar 

  25. Carbajal, G. V. & Malmierca, M. S. Novelty Processing in the Auditory System: Detection, Adaptation or Expectation? in The Senses: A Comprehensive Reference 749–776, https://doi.org/10.1016/B978-0-12-809324-5.24154-0 (Elsevier, 2020).

  26. Malmierca, M. S. et al. Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus. NeuroImage 184, 889–900, https://doi.org/10.1016/J.NEUROIMAGE.2018.10.012 (2019).

    Google Scholar 

  27. Letzkus, J. J., Wolff, S. B. E. & Lüthi, A. Disinhibition, a Circuit Mechanism for Associative Learning and Memory. Neuron 88, 264–276, https://doi.org/10.1016/j.neuron.2015.09.024 (2015).

    Google Scholar 

  28. Eggermann, E. & Feldmeyer, D. Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. Proc. Natl. Acad. Sci. USA 106, 11753–11758, https://doi.org/10.1073/pnas.0810062106 (2009).

    Google Scholar 

  29. Hasselmo, M. E. & Sarter, M. Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition. Neuropsychopharmacol. 36, 52–73, https://doi.org/10.1038/npp.2010.104 (2011).

    Google Scholar 

  30. Hasselmo, M. E. & Giocomo, L. M. Cholinergic Modulation of Cortical Function. J. Mol. Neurosci. 30, 133–136, https://doi.org/10.1385/JMN:30:1:133 (2006).

    Google Scholar 

  31. Bastos, A. M., Usrey, W., Adams, R., Mangun., G., Fries, P. & Friston, K. Canonical Microcircuits for Predictive Coding. Neuron 76, 695–711, https://doi.org/10.1016/j.neuron.2012.10.038 (2012).

    Google Scholar 

  32. Picciotto, M. R., Higley, M. J. & Mineur, Y. S. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron 76, 116–129, https://doi.org/10.1016/j.neuron.2012.08.036 (2012).

    Google Scholar 

  33. Rauschecker, J. P., Leaver, A. M. & Mühlau, M. Tuning Out the Noise: Limbic-Auditory Interactions in Tinnitus. Neuron 66, 819–826, https://doi.org/10.1016/j.neuron.2010.04.032 (2010).

    Google Scholar 

  34. Stephan, K. E., Friston, K. J. & Frith, C. D. Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of Self-monitoring. Schizophr. Bull. 35, 509–527, https://doi.org/10.1093/schbul/sbn176 (2009).

    Google Scholar 

  35. Pérez-González, D., Lao-Rodríguez, A. B., Aedo-Sánchez, C. & Malmierca, M. S. Acetylcholine modulates the precision of prediction error in the auditory cortex. eLife 12, RP91475, https://doi.org/10.7554/eLife.91475 (2024).

    Google Scholar 

  36. Nieto-Diego, J. & Malmierca, M. S. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat. PLoS Biol. 14, e1002397, https://doi.org/10.1371/journal.pbio.1002397 (2016).

    Google Scholar 

  37. Ayala, Y. A. & Malmierca, M. S. Cholinergic Modulation of Stimulus-Specific Adaptation in the Inferior Colliculus. J. Neurosci. 35, 12261–12272, https://doi.org/10.1523/jneurosci.0909-15.2015 (2015).

    Google Scholar 

  38. Farley, G. R., Morley, B. J., Javel, E. & Gorga, M. P. Single-unit responses to cholinergic agents in the rat inferior colliculus. Hear. Res. 11, 73–91, https://doi.org/10.1016/0378-5955(83)90046-1 (1983).

    Google Scholar 

  39. Habbicht, H. & Vater, M. A microiontophoretic study of acetylcholine effects in the inferior colliculus of horseshoe bats: implications for a modulatory role. Brain Res. 724, 169–179, https://doi.org/10.1016/0006-8993(96)00224-7 (1996) .

    Google Scholar 

  40. Vázquez-Borsetti, P., Malmierca, M. S. & Pérez-González, D. Oddball paradigm in the auditory cortex: an open dataset. Figshare https://doi.org/10.6084/m9.figshare.30132502 (2025).

    Google Scholar 

  41. Vázquez-Borsetti, P., Malmierca, M. S. & Pérez-González, D. Oddball paradigm in the auditory cortex: an open dataset. GitHub https://github.com/Vazquez-Borsetti/oddball-paradigm-in-the-auditory-cortex-an-open-dataset (2025).

  42. Vázquez-Borsetti, P., Malmierca, M. S. & Pérez-González, D. Raw multi-unit recordings from rat auditory cortex during oddball paradigm experiments. G-Node https://doi.org/10.12751/g-node.k9t4b5 (2025).

Download references

Acknowledgements

This work was supported by project PID2023-148541OB-I00, funded by MICIU/AEI (https://doi.org/10.13039/501100011033) and FEDER EU, awarded to M.S.M. and D.P.G.; and the Fundación Ramón Areces (grant CIVP20A6616), the Consejería de Educación, Junta de Castilla y León (SA218P23), and the strategic research programs of excellence from the Regional Government of Castile and León, co-funded by the ERDF Operational Programme (ref. CLU-2023-1-01), awarded to M.S.M.

Author information

Authors and Affiliations

  1. Institute of Cell Biology and Neurosciences (IBCN) – National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina

    Pablo Vázquez-Borsetti

  2. Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain

    Ana B. Lao-Rodríguez, Manuel S. Malmierca & David Pérez-González

  3. Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain

    Ana B. Lao-Rodríguez, Manuel S. Malmierca & David Pérez-González

  4. Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain

    Ana B. Lao-Rodríguez & Manuel S. Malmierca

  5. Department of Basic Psychology, Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, Salamanca, Spain

    David Pérez-González

Authors
  1. Pablo Vázquez-Borsetti
    View author publications

    Search author on:PubMed Google Scholar

  2. Ana B. Lao-Rodríguez
    View author publications

    Search author on:PubMed Google Scholar

  3. Manuel S. Malmierca
    View author publications

    Search author on:PubMed Google Scholar

  4. David Pérez-González
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Pablo Vázquez-Borsetti: Software, Validation, Formal analysis, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization. Ana B. Lao-Rodríguez: Investigation, Writing - Review & Editing. Manuel S. Malmierca: Writing - Review & Editing, Supervision, Funding acquisition. David Pérez-González: Conceptualization, Data Curation, Writing - Review & Editing, Funding acquisition.

Corresponding author

Correspondence to David Pérez-González.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Borsetti, P., Lao-Rodríguez, A.B., Malmierca, M.S. et al. Dataset of Oddball Paradigm experiment in the Auditory Cortex and the effect of acetylcholine. Sci Data (2026). https://doi.org/10.1038/s41597-025-06484-6

Download citation

  • Received: 19 September 2025

  • Accepted: 15 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s41597-025-06484-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing