Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Updated chronologies for North American small mammal fossil localities in the Neotoma Paleoecology Database
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 27 January 2026

Updated chronologies for North American small mammal fossil localities in the Neotoma Paleoecology Database

  • Val J. P. Syverson  ORCID: orcid.org/0000-0002-6076-53261,2,
  • Simon J. Goring  ORCID: orcid.org/0000-0002-2700-46053,
  • Nicola Cullen1,
  • Marta A. Jarzyna  ORCID: orcid.org/0000-0002-6734-05664,
  • André M. Bellvé  ORCID: orcid.org/0000-0002-8206-18805,6,
  • Andrew Martindale  ORCID: orcid.org/0000-0002-8182-42847 &
  • …
  • Jessica L. Blois  ORCID: orcid.org/0000-0003-4048-177X1 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate-change ecology
  • Community ecology
  • Palaeoecology

Abstract

Community paleoecology is a powerful approach for analyzing ecological communities during long-term climate shifts like the Pleistocene-Holocene transition, but it depends on accurate estimates of species co-occurrences. The Neotoma Paleoecology Database is an open paleodata resource that stores assemblage-level taxonomic, spatial, and temporal information for Quaternary fossil localities. However, its age estimates for many vertebrate fossil localities are based on uncalibrated radiocarbon dates, hindering comparisons with other paleoenvironmental proxies. In order to provide consistent and updated age inferences suitable for broad-scale paleoecological studies, we have reassessed the radiocarbon chronologies for all 14C-dated North American small mammal collections in Neotoma. Here we present the resulting database update, including 2074 radiocarbon dates newly added to Neotoma and new calibrated radiocarbon chronologies for 1553 fossil collections. The new chronologies cover more sites and include more dates than the chronologies previously available in Neotoma. They also provide fossil assemblage age estimates in calendar years, facilitating integration with other data sources. We anticipate that these updates will be useful for various applications in community paleoecology.

Similar content being viewed by others

p3k14c, a synthetic global database of archaeological radiocarbon dates

Article Open access 27 January 2022

Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology

Article Open access 26 September 2022

EutherianCoP. An integrated biotic and climate database for conservation paleobiology based on eutherian mammals

Article Open access 13 January 2025

Data availability

The aggregated dataset in Neotoma, including both dates and chronologies along with all other data for the affected sites, is available for download from the Neotoma API at the endpoint api.neotomadb.org/v2.0/data/aggregatedatasets/1352. The newly added dates and chronologies are separately available as dates pub copy.xlsx53 and chronologies pub copy.xlsx54 in the Zenodo release of the Github repository: https://doi.org/10.5281/zenodo.17064489.

Code availability

The R and OxCal code used in this project is available in the Zenodo release of the Github repository: https://doi.org/10.5281/zenodo.17064489.

References

  1. O’Keefe, F. R. et al. Pre–Younger Dryas megafaunal extirpation at Rancho La Brea linked to fire-driven state shift. Science 381, eabo3594 (2023).

    Google Scholar 

  2. Short, R. A., McGuire, J. L., Polly, P. D. & Lawing, A. M. Trophically integrated ecometric models as tools for demonstrating spatial and temporal functional changes in mammal communities. Proc. Natl. Acad. Sci. 120, e2201947120 (2023).

    Google Scholar 

  3. Finsinger, W., Bigler, C., Schwörer, C. & Tinner, W. Rates of palaeoecological change can inform ecosystem restoration. Biogeosciences 21, 1629–1638 (2024).

    Google Scholar 

  4. Shuman, B. N. Patterns of centennial to millennial Holocene climate variation in the North American mid-latitudes. Clim. Past 20, 1703–1720 (2024).

    Google Scholar 

  5. Blois, J. L., Williams, J. W. J., Grimm, E. C., Jackson, S. T. & Graham, R. W. A methodological framework for assessing and reducing temporal uncertainty in paleovegetation mapping from late-Quaternary pollen records. Quat. Sci. Rev. 30, 1926–1939 (2011).

    Google Scholar 

  6. Blaauw, M., Christen, J. A., Bennett, K. D. & Reimer, P. J. Double the dates and go for Bayes — Impacts of model choice, dating density and quality on chronologies. Quat. Sci. Rev. 188, 58–66 (2018).

    Google Scholar 

  7. Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).

    Google Scholar 

  8. Zimmerman, S. R. H. & Wahl, D. B. Holocene paleoclimate change in the western US: The importance of chronology in discerning patterns and drivers. Quat. Sci. Rev. 246, 106487 (2020).

    Google Scholar 

  9. Flantua, S. G. A. et al. A guide to the processing and standardization of global palaeoecological data for large-scale syntheses using fossil pollen. Glob. Ecol. Biogeogr. 32, 1377–1394 (2023).

    Google Scholar 

  10. Lovelace, D. M. et al. An age-depth model and revised stratigraphy of vertebrate-bearing units in Natural Trap Cave, Wyoming. Quat. Int. 647–648, 4–21 (2023).

    Google Scholar 

  11. Parnell, A. C., Buck, C. E. & Doan, T. K. A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction. Quat. Sci. Rev. 30, 2948–2960 (2011).

    Google Scholar 

  12. Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).

    Google Scholar 

  13. Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).

    Google Scholar 

  14. Blaauw, M. 14C age modeling. in Encyclopedia of Quaternary Science (Third edition) (ed. Elias, S.) 618–627, https://doi.org/10.1016/B978-0-323-99931-1.00076-3 (Elsevier, Oxford, 2025).

  15. Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Google Scholar 

  16. Hajdas, I. et al. Radiocarbon dating. Nat. Rev. Methods Primer 1, 1–26 (2021).

    Google Scholar 

  17. Reimer, P. J. Composition and consequences of the IntCal20 radiocarbon calibration curve. Quat. Res. 96, 22–27 (2020).

    Google Scholar 

  18. Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Google Scholar 

  19. Stuiver, M. et al. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 1041–1083 (1998).

    Google Scholar 

  20. Reimer, P. J. et al. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46, 1029–1058 (2004).

    Google Scholar 

  21. Reimer, P. J. et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 1111–1150 (2009).

    Google Scholar 

  22. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Google Scholar 

  23. re3data.org: Neotoma Paleoecology Database. re3data.org - Registry of Research Data Repositories, https://doi.org/10.17616/R3PD38 (2025).

  24. Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).

    Google Scholar 

  25. Wang, Y., Goring, S. J. & McGuire, J. L. Bayesian ages for pollen records since the last glaciation in North America. Sci. Data 6, 176 (2019).

    Google Scholar 

  26. FAUNMAP Working Group, Graham, R. W. & Lundelius, E. L. Faunmap: A Database Documenting Late Quaternary Distributions of Mammal Species in the United States. (Illinois State Museum, Springfield, 1994).

  27. Graham, R. W. et al. Spatial response of mammals to late Quaternary environmental fluctuations. Science 272, 1601–1606 (1996).

    Google Scholar 

  28. Stuart, A. J. & Lister, A. M. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quat. Sci. Rev. 51, 1–17 (2012).

    Google Scholar 

  29. McDonald, H. G., Dundas, R. G. & Chatters, J. C. Taxonomy, paleoecology and taphonomy of ground sloths (Xenarthra) from the Fairmead Landfill locality (Pleistocene: Irvingtonian) of Madera County, California. Quat. Res. 79, 215–227 (2013).

    Google Scholar 

  30. White, L. C., Saltre, F., Bradshaw, C. J. A. & Austin, J. J. High-quality fossil dates support a synchronous, Late Holocene extinction of devils and thylacines in mainland Australia. Biol. Lett. 14, 20170642 (2018).

    Google Scholar 

  31. Wendt, J. A. F., McWethy, D. B., Widga, C. & Shuman, B. N. Large-scale climatic drivers of bison distribution and abundance in North America since the Last Glacial Maximum. Quat. Sci. Rev. 284, 107472 (2022).

    Google Scholar 

  32. Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–774 (2010).

    Google Scholar 

  33. Smith, F. A. et al. Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. Ecography 39, 223–239 (2016).

    Google Scholar 

  34. Martindale, A. et al. Canadian Archaeological Radiocarbon Database (CARD 2.1) (2016).

  35. Gajewski, K. et al. The Canadian Archaeological Radiocarbon Database (CARD): archaeological 14C dates in North America and their paleoenvironmental context. Radiocarbon 53, 371–394 (2011).

    Google Scholar 

  36. Kelly, R. L. et al. A new radiocarbon database for the lower 48 states. Am. Antiq. 87, 581–590 (2022).

    Google Scholar 

  37. David G. Anderson, J. W. Digital Index of North American Archaeology (DINAA). Open Context, https://doi.org/10.6078/M7N877Q0 (2015).

  38. Borden, C. A uniform site designation scheme for Canada. Anthropol. Br. Columbia 3, 44–48 (1952).

    Google Scholar 

  39. Bird, D. et al. p3k14c, a synthetic global database of archaeological radiocarbon dates. Sci. Data 9, 27 (2022).

    Google Scholar 

  40. Bird, D., Bocinsky, R. K. & Miranda, L. p3k14c (2022).

  41. Peters, S. et al. A new tool for deep-down data mining. Eos, https://doi.org/10.1029/2017EO082377 (2017).

  42. Bronk Ramsey, C. Radiocarbon dating: revolutions in understanding. Archaeometry 50, 249–275 (2008).

    Google Scholar 

  43. Rodríguez-Rey, M. et al. Criteria for assessing the quality of Middle Pleistocene to Holocene vertebrate fossil ages. Quat. Geochronol. 30, 69–79 (2015).

    Google Scholar 

  44. Brown, T., Nelson, D., Vogel, J. & Southon, J. Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177 (1988).

    Google Scholar 

  45. Fuller, B. T. et al. Ultrafiltration for asphalt removal from bone collagen for radiocarbon dating and isotopic analysis of Pleistocene fauna at the tar pits of Rancho La Brea, Los Angeles, California. Quat. Geochronol. 22, 85–98 (2014).

    Google Scholar 

  46. Stafford, T. Jr, Jull, A., Brendel, K., Duhamel, R. & Donahue, D. Study of bone radiocarbon dating accuracy at the University of Arizona NSF Accelerator Facility for Radioisotope Analysis. Radiocarbon 29, 24–44 (1987).

    Google Scholar 

  47. Gove, H. E. Some comments on accelerator mass spectrometry. Radiocarbon 42, 127–135 (2000).

    Google Scholar 

  48. Schiffer, M. B. Radiocarbon dating and the “old wood” problem: The case of the Hohokam chronology. J. Archaeol. Sci. 13, 13–30 (1986).

    Google Scholar 

  49. Holden, A. R. et al. A 50,000 year insect record from Rancho La Brea, Southern California: Insights into past climate and fossil deposition. Quat. Sci. Rev. 168, 123–136 (2017).

    Google Scholar 

  50. Vidaña, S. D. & Goring, S. J. neotoma2: An R package to access data from the Neotoma Paleoecology Database. J. Open Source Softw. 8, 5561 (2023).

    Google Scholar 

  51. Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    Google Scholar 

  52. Syverson, V. J. P. & Blois, J. L. Aggregated dataset for sites with updated dates and chronologies. Neotoma https://api.neotomadb.org/v2.0/data/aggregatedatasets/13.

  53. Syverson, V. J. P. & Blois, J. L. New radiocarbon dates. Zenodo, https://doi.org/10.5281/zenodo.17064489.

  54. Syverson, V. J. P. & Blois, J. L. New chronologies. Zenodo, https://doi.org/10.5281/zenodo.17064489.

  55. Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).

    Google Scholar 

  56. Herrando-Pérez, S. & Stafford, T. W. Making vertebrate fossil radiocarbon dates more useful for global scientific research. J. Quaternary Sci. https://doi.org/10.1002/jqs.70012 (2025).

Download references

Author information

Authors and Affiliations

  1. Life and Environmental Sciences, University of California, Merced, Merced, CA, USA

    Val J. P. Syverson, Nicola Cullen & Jessica L. Blois

  2. Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, USA

    Val J. P. Syverson

  3. Department of GeographyCenter for Climatic ResearchData Science Institute, University of Wisconsin-Madison, Madison, USA

    Simon J. Goring

  4. Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA

    Marta A. Jarzyna

  5. Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA

    André M. Bellvé

  6. School of Environment, Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand

    André M. Bellvé

  7. Department of Anthropology, University of British Columbia, Vancouver, BC, Canada

    Andrew Martindale

Authors
  1. Val J. P. Syverson
    View author publications

    Search author on:PubMed Google Scholar

  2. Simon J. Goring
    View author publications

    Search author on:PubMed Google Scholar

  3. Nicola Cullen
    View author publications

    Search author on:PubMed Google Scholar

  4. Marta A. Jarzyna
    View author publications

    Search author on:PubMed Google Scholar

  5. André M. Bellvé
    View author publications

    Search author on:PubMed Google Scholar

  6. Andrew Martindale
    View author publications

    Search author on:PubMed Google Scholar

  7. Jessica L. Blois
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.L.B. and M.A.J. conceptualized the project; V.J.P.S. carried it out and wrote the manuscript, with substantial contributions by J.L.B. and edits by J.L.B., M.A.J. and A.M.B. AM facilitated access to data from CARD and provided information on data status. S.J.G. provided technical support and facilitated bulk upload of new dates and chronologies to Neotoma; and N.C. handled corrections, new sites, and all other changes to Neotoma data. All authors have reviewed, edited, and approved the manuscript. We thank the original data contributors and the Neotoma Paleoecology Database for providing access to the data. This work was supported by National Science Foundation (NSF) Division of Earth Sciences (EAR) 2149416, NSF EAR 1948579, and NSF EAR 2410965 to J.L.B.; NSF EAR 2149419 to M.A.J.; and N.S.F. EAR 2410961 to S.J.G.

Corresponding author

Correspondence to Val J. P. Syverson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syverson, V.J.P., Goring, S.J., Cullen, N. et al. Updated chronologies for North American small mammal fossil localities in the Neotoma Paleoecology Database. Sci Data (2026). https://doi.org/10.1038/s41597-025-06491-7

Download citation

  • Received: 10 September 2025

  • Accepted: 16 December 2025

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s41597-025-06491-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing