Abstract
Community paleoecology is a powerful approach for analyzing ecological communities during long-term climate shifts like the Pleistocene-Holocene transition, but it depends on accurate estimates of species co-occurrences. The Neotoma Paleoecology Database is an open paleodata resource that stores assemblage-level taxonomic, spatial, and temporal information for Quaternary fossil localities. However, its age estimates for many vertebrate fossil localities are based on uncalibrated radiocarbon dates, hindering comparisons with other paleoenvironmental proxies. In order to provide consistent and updated age inferences suitable for broad-scale paleoecological studies, we have reassessed the radiocarbon chronologies for all 14C-dated North American small mammal collections in Neotoma. Here we present the resulting database update, including 2074 radiocarbon dates newly added to Neotoma and new calibrated radiocarbon chronologies for 1553 fossil collections. The new chronologies cover more sites and include more dates than the chronologies previously available in Neotoma. They also provide fossil assemblage age estimates in calendar years, facilitating integration with other data sources. We anticipate that these updates will be useful for various applications in community paleoecology.
Similar content being viewed by others
Data availability
The aggregated dataset in Neotoma, including both dates and chronologies along with all other data for the affected sites, is available for download from the Neotoma API at the endpoint api.neotomadb.org/v2.0/data/aggregatedatasets/1352. The newly added dates and chronologies are separately available as dates pub copy.xlsx53 and chronologies pub copy.xlsx54 in the Zenodo release of the Github repository: https://doi.org/10.5281/zenodo.17064489.
Code availability
The R and OxCal code used in this project is available in the Zenodo release of the Github repository: https://doi.org/10.5281/zenodo.17064489.
References
O’Keefe, F. R. et al. Pre–Younger Dryas megafaunal extirpation at Rancho La Brea linked to fire-driven state shift. Science 381, eabo3594 (2023).
Short, R. A., McGuire, J. L., Polly, P. D. & Lawing, A. M. Trophically integrated ecometric models as tools for demonstrating spatial and temporal functional changes in mammal communities. Proc. Natl. Acad. Sci. 120, e2201947120 (2023).
Finsinger, W., Bigler, C., Schwörer, C. & Tinner, W. Rates of palaeoecological change can inform ecosystem restoration. Biogeosciences 21, 1629–1638 (2024).
Shuman, B. N. Patterns of centennial to millennial Holocene climate variation in the North American mid-latitudes. Clim. Past 20, 1703–1720 (2024).
Blois, J. L., Williams, J. W. J., Grimm, E. C., Jackson, S. T. & Graham, R. W. A methodological framework for assessing and reducing temporal uncertainty in paleovegetation mapping from late-Quaternary pollen records. Quat. Sci. Rev. 30, 1926–1939 (2011).
Blaauw, M., Christen, J. A., Bennett, K. D. & Reimer, P. J. Double the dates and go for Bayes — Impacts of model choice, dating density and quality on chronologies. Quat. Sci. Rev. 188, 58–66 (2018).
Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).
Zimmerman, S. R. H. & Wahl, D. B. Holocene paleoclimate change in the western US: The importance of chronology in discerning patterns and drivers. Quat. Sci. Rev. 246, 106487 (2020).
Flantua, S. G. A. et al. A guide to the processing and standardization of global palaeoecological data for large-scale syntheses using fossil pollen. Glob. Ecol. Biogeogr. 32, 1377–1394 (2023).
Lovelace, D. M. et al. An age-depth model and revised stratigraphy of vertebrate-bearing units in Natural Trap Cave, Wyoming. Quat. Int. 647–648, 4–21 (2023).
Parnell, A. C., Buck, C. E. & Doan, T. K. A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction. Quat. Sci. Rev. 30, 2948–2960 (2011).
Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).
Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).
Blaauw, M. 14C age modeling. in Encyclopedia of Quaternary Science (Third edition) (ed. Elias, S.) 618–627, https://doi.org/10.1016/B978-0-323-99931-1.00076-3 (Elsevier, Oxford, 2025).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Hajdas, I. et al. Radiocarbon dating. Nat. Rev. Methods Primer 1, 1–26 (2021).
Reimer, P. J. Composition and consequences of the IntCal20 radiocarbon calibration curve. Quat. Res. 96, 22–27 (2020).
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Stuiver, M. et al. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 1041–1083 (1998).
Reimer, P. J. et al. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46, 1029–1058 (2004).
Reimer, P. J. et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 1111–1150 (2009).
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
re3data.org: Neotoma Paleoecology Database. re3data.org - Registry of Research Data Repositories, https://doi.org/10.17616/R3PD38 (2025).
Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).
Wang, Y., Goring, S. J. & McGuire, J. L. Bayesian ages for pollen records since the last glaciation in North America. Sci. Data 6, 176 (2019).
FAUNMAP Working Group, Graham, R. W. & Lundelius, E. L. Faunmap: A Database Documenting Late Quaternary Distributions of Mammal Species in the United States. (Illinois State Museum, Springfield, 1994).
Graham, R. W. et al. Spatial response of mammals to late Quaternary environmental fluctuations. Science 272, 1601–1606 (1996).
Stuart, A. J. & Lister, A. M. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quat. Sci. Rev. 51, 1–17 (2012).
McDonald, H. G., Dundas, R. G. & Chatters, J. C. Taxonomy, paleoecology and taphonomy of ground sloths (Xenarthra) from the Fairmead Landfill locality (Pleistocene: Irvingtonian) of Madera County, California. Quat. Res. 79, 215–227 (2013).
White, L. C., Saltre, F., Bradshaw, C. J. A. & Austin, J. J. High-quality fossil dates support a synchronous, Late Holocene extinction of devils and thylacines in mainland Australia. Biol. Lett. 14, 20170642 (2018).
Wendt, J. A. F., McWethy, D. B., Widga, C. & Shuman, B. N. Large-scale climatic drivers of bison distribution and abundance in North America since the Last Glacial Maximum. Quat. Sci. Rev. 284, 107472 (2022).
Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–774 (2010).
Smith, F. A. et al. Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. Ecography 39, 223–239 (2016).
Martindale, A. et al. Canadian Archaeological Radiocarbon Database (CARD 2.1) (2016).
Gajewski, K. et al. The Canadian Archaeological Radiocarbon Database (CARD): archaeological 14C dates in North America and their paleoenvironmental context. Radiocarbon 53, 371–394 (2011).
Kelly, R. L. et al. A new radiocarbon database for the lower 48 states. Am. Antiq. 87, 581–590 (2022).
David G. Anderson, J. W. Digital Index of North American Archaeology (DINAA). Open Context, https://doi.org/10.6078/M7N877Q0 (2015).
Borden, C. A uniform site designation scheme for Canada. Anthropol. Br. Columbia 3, 44–48 (1952).
Bird, D. et al. p3k14c, a synthetic global database of archaeological radiocarbon dates. Sci. Data 9, 27 (2022).
Bird, D., Bocinsky, R. K. & Miranda, L. p3k14c (2022).
Peters, S. et al. A new tool for deep-down data mining. Eos, https://doi.org/10.1029/2017EO082377 (2017).
Bronk Ramsey, C. Radiocarbon dating: revolutions in understanding. Archaeometry 50, 249–275 (2008).
Rodríguez-Rey, M. et al. Criteria for assessing the quality of Middle Pleistocene to Holocene vertebrate fossil ages. Quat. Geochronol. 30, 69–79 (2015).
Brown, T., Nelson, D., Vogel, J. & Southon, J. Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177 (1988).
Fuller, B. T. et al. Ultrafiltration for asphalt removal from bone collagen for radiocarbon dating and isotopic analysis of Pleistocene fauna at the tar pits of Rancho La Brea, Los Angeles, California. Quat. Geochronol. 22, 85–98 (2014).
Stafford, T. Jr, Jull, A., Brendel, K., Duhamel, R. & Donahue, D. Study of bone radiocarbon dating accuracy at the University of Arizona NSF Accelerator Facility for Radioisotope Analysis. Radiocarbon 29, 24–44 (1987).
Gove, H. E. Some comments on accelerator mass spectrometry. Radiocarbon 42, 127–135 (2000).
Schiffer, M. B. Radiocarbon dating and the “old wood” problem: The case of the Hohokam chronology. J. Archaeol. Sci. 13, 13–30 (1986).
Holden, A. R. et al. A 50,000 year insect record from Rancho La Brea, Southern California: Insights into past climate and fossil deposition. Quat. Sci. Rev. 168, 123–136 (2017).
Vidaña, S. D. & Goring, S. J. neotoma2: An R package to access data from the Neotoma Paleoecology Database. J. Open Source Softw. 8, 5561 (2023).
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).
Syverson, V. J. P. & Blois, J. L. Aggregated dataset for sites with updated dates and chronologies. Neotoma https://api.neotomadb.org/v2.0/data/aggregatedatasets/13.
Syverson, V. J. P. & Blois, J. L. New radiocarbon dates. Zenodo, https://doi.org/10.5281/zenodo.17064489.
Syverson, V. J. P. & Blois, J. L. New chronologies. Zenodo, https://doi.org/10.5281/zenodo.17064489.
Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).
Herrando-Pérez, S. & Stafford, T. W. Making vertebrate fossil radiocarbon dates more useful for global scientific research. J. Quaternary Sci. https://doi.org/10.1002/jqs.70012 (2025).
Author information
Authors and Affiliations
Contributions
J.L.B. and M.A.J. conceptualized the project; V.J.P.S. carried it out and wrote the manuscript, with substantial contributions by J.L.B. and edits by J.L.B., M.A.J. and A.M.B. AM facilitated access to data from CARD and provided information on data status. S.J.G. provided technical support and facilitated bulk upload of new dates and chronologies to Neotoma; and N.C. handled corrections, new sites, and all other changes to Neotoma data. All authors have reviewed, edited, and approved the manuscript. We thank the original data contributors and the Neotoma Paleoecology Database for providing access to the data. This work was supported by National Science Foundation (NSF) Division of Earth Sciences (EAR) 2149416, NSF EAR 1948579, and NSF EAR 2410965 to J.L.B.; NSF EAR 2149419 to M.A.J.; and N.S.F. EAR 2410961 to S.J.G.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Syverson, V.J.P., Goring, S.J., Cullen, N. et al. Updated chronologies for North American small mammal fossil localities in the Neotoma Paleoecology Database. Sci Data (2026). https://doi.org/10.1038/s41597-025-06491-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-025-06491-7


