Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
An Extended VIIRS-like Artificial Nighttime Light Data Reconstruction (1986–2024)
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 23 January 2026

An Extended VIIRS-like Artificial Nighttime Light Data Reconstruction (1986–2024)

  • Yihe Tian1 na1,
  • Kwan Man Cheng2 na1,
  • Zhengbo Zhang3,
  • Tao Zhang1,
  • Junning Feng1,
  • Zhehao Ren4,
  • Suju Li5,
  • Dongmei Yan6 &
  • …
  • Bing Xu1 

Scientific Data , Article number:  (2026) Cite this article

  • 827 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Socioeconomic scenarios
  • Sustainability

Abstract

Artificial Night-Time Light (NTL) remote sensing is a vital proxy for quantifying the intensity and spatial distribution of human activities. Although the NPP-VIIRS sensor provides high-quality NTL observations, its temporal coverage, which begins in 2012, restricts long-term time-series studies that extend to earlier periods. Current extended VIIRS-like NTL data products suffer from two significant shortcomings: the underestimation of light intensity and the omission of structural details. To overcome these limitations, we present the Extended VIIRS-like Artificial Nighttime Light (EVAL) dataset, a new annual NTL dataset for China spanning from 1986 to 2024. This dataset was generated using a novel two-stage deep learning model designed to address the aforementioned shortcomings. The model first constructs an initial estimate and subsequently refines fine-grained structural details using high-resolution impervious surface data as guidance. Quantitative evaluations demonstrate that EVAL significantly outperforms state-of-the-art products, exhibiting superior temporal consistency and a stronger correlation with socioeconomic indicators.

Similar content being viewed by others

A global annual simulated VIIRS nighttime light dataset from 1992 to 2023

Article Open access 18 December 2024

Global nighttime light dataset from 1992 to 2022 with focus on low-light areas

Article Open access 11 June 2025

A Prolonged Artificial Nighttime-light Dataset of China (1984-2020)

Article Open access 22 April 2024

Data availability

The Extended VIIRS-like Artificial Nighttime Light (EVAL) dataset generated in this study is available at the National Tibetan Plateau Data Center (TPDC) (https://doi.org/10.11888/HumanNat.tpdc.30293044).

Code availability

The programs used to generate all the results were Python 3.12. The code and scripts used for training, testing, and predicting the NTL data are available in the open GitHub repository “https://github.com/Rookie1miao/EVAL_framework”.

References

  1. Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W. & Davis, E. R. Mapping city lights with nighttime data from the dmsp operational linescan system. Photogrammetric Engineering and Remote Sensing 63(6), 727–734 (1997).

    Google Scholar 

  2. Zheng, Q., Seto, K. C., Zhou, Y., You, S. & Weng, Q. Nighttime light remote sensing for urban applications: progress, challenges, and prospects. ISPRS Journal of Photogrammetry and Remote Sensing 202, 125–141, https://doi.org/10.1016/j.isprsjprs.2023.05.028 (2023).

    Google Scholar 

  3. Levin, N. et al. Remote sensing of night lights: a review and an outlook for the future. Remote Sensing of Environment 237, 111443, https://doi.org/10.1016/j.rse.2019.111443 (2020).

    Google Scholar 

  4. Chen, J. et al. Global 1 km  × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Scientific Data 9(1), 202, https://doi.org/10.1038/s41597-022-01322-5 (2022).

    Google Scholar 

  5. Ma, J., Li, J., Wu, W. & Liu, J. Global forest fragmentation change from 2000 to 2020. Nature Communications 14(1), 3752, https://doi.org/10.1038/s41467-023-39221-x (2023).

    Google Scholar 

  6. Zhang, Q. & Seto, K. C. Mapping urbanization dynamics at regional and global scales using multi-temporal dmsp/ols nighttime light data. Remote Sensing of Environment 115(9), 2320–2329, https://doi.org/10.1016/j.rse.2011.04.032 (2011).

    Google Scholar 

  7. Bennett, M. M. & Smith, L. C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sensing of Environment 192, 176–197, https://doi.org/10.1016/j.rse.2017.01.005 (2017).

    Google Scholar 

  8. Sutton, P. C. Modeling population density with night-time satellite imagery and gis. Computers, Environment and Urban Systems 21(3-4), 227–244, https://doi.org/10.1016/S0198-9715(97)01005-3 (1997).

    Google Scholar 

  9. Ma, T., Zhou, C., Pei, T., Haynie, S. & Fan, J. Responses of suomi-npp viirs-derived nighttime lights to socioeconomic activity in china’s cities. Remote Sensing Letters 5(2), 165–174, https://doi.org/10.1080/2150704X.2014.890758 (2014).

    Google Scholar 

  10. Henderson, M., Yeh, E. T., Gong, P., Elvidge, C. D. & Baugh, K. E. Validation of urban boundaries derived from global night-time satellite imagery. International Journal of Remote Sensing 24(3), 595–609, https://doi.org/10.1080/01431160304982 (2003).

    Google Scholar 

  11. Liu, S. et al. Enhancing nighttime light remote sensing: introducing the nighttime light background value (nlbv) for urban applications. International Journal of Applied Earth Observation and Geoinformation 126, 103626, https://doi.org/10.1016/j.jag.2023.103626 (2024).

    Google Scholar 

  12. Jung, M. C., Kang, M. & Kim, S. Does polycentric development produce less transportation carbon emissions? evidence from urban form identified by night-time lights across us metropolitan areas. Urban Climate 44, 101223, https://doi.org/10.1016/j.uclim.2022.101223 (2022).

    Google Scholar 

  13. Fang, G., Gao, Z., Tian, L. & Fu, M. What drives urban carbon emission efficiency? – spatial analysis based on nighttime light data. Applied Energy 312, 118772, https://doi.org/10.1016/j.apenergy.2022.118772 (2022).

    Google Scholar 

  14. Xu, J., Wang, J., Li, R. & Yang, X. Spatio-temporal effects of urbanization on co2 emissions: evidences from 268 chinese cities. Energy Policy 177, 113569, https://doi.org/10.1016/j.enpol.2023.113569 (2023).

    Google Scholar 

  15. Zhang, L., Fang, C., Zhao, R., Zhu, C. & Guan, J. Spatial-temporal evolution and driving force analysis of eco-quality in urban agglomerations in china. Science of The Total Environment 866, 161465, https://doi.org/10.1016/j.scitotenv.2023.161465 (2023).

    Google Scholar 

  16. Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological Reviews 88(4), 912–927, https://doi.org/10.1111/brv.12036 (2013).

    Google Scholar 

  17. Lv, Z. et al. Advancing urban connectivity measurements for sdg 11.a with sdgsat-1 nighttime light data in urban agglomerations. International Journal of Applied Earth Observation and Geoinformation 140, 104611, https://doi.org/10.1016/j.jag.2025.104611 (2025).

    Google Scholar 

  18. Levin, N. Challenges in remote sensing of night lights – a research agenda for the next decade. Remote Sensing of Environment 328, 114869, https://doi.org/10.1016/j.rse.2025.114869 (2025).

    Google Scholar 

  19. Wu, Y., Shi, K., Chen, Z., Liu, S. & Chang, Z. Developing improved time-series dmsp-ols-like data (1992–2019) in china by integrating dmsp-ols and snpp-viirs. IEEE Transactions on Geoscience and Remote Sensing 60, 1–14, https://doi.org/10.1109/TGRS.2021.3135333 (2021).

    Google Scholar 

  20. Shi, K. et al. Evaluation of npp-viirs night-time light composite data for extracting built-up urban areas. Remote Sensing Letters 5(4), 358–366, https://doi.org/10.1080/2150704X.2014.905728 (2014).

    Google Scholar 

  21. Zhang, Q., Pandey, B. & Seto, K. C. A robust method to generate a consistent time series from dmsp/ols nighttime light data. IEEE Transactions on Geoscience and Remote Sensing 54(10), 5821–5831, https://doi.org/10.1109/TGRS.2016.2572724 (2016).

    Google Scholar 

  22. Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. figshare. Dataset, https://doi.org/10.6084/m9.figshare.9828827.v2 (2020).

  23. Cao, X. et al. A simple self-adjusting model for correcting the blooming effects in dmsp-ols nighttime light images. Remote Sensing of Environment 224, 401–411, https://doi.org/10.1016/j.rse.2019.02.019 (2019).

    Google Scholar 

  24. Yu, T. et al. Reconnecting the 30-year timeline (1992–2023): constructing a consistent global 500 m ntl dataset using super-resolution reconstruction and ground-object feature constraints. IEEE Transactions on Geoscience and Remote Sensing, https://doi.org/10.1109/TGRS.2025.3592121 (2025).

  25. Chen, Z. et al. An extended time-series (2000–2018) of global npp-viirs-like nighttime light data from a cross-sensor calibration. Earth System Science Data 13(3), 889–906, https://doi.org/10.5194/essd-13-889-2021 (2021).

    Google Scholar 

  26. Chen, X., Wang, Z. & Zhang, F. A global annual simulated viirs nighttime light dataset from 1992 to 2023. Scientific Data 11(1), 1380, https://doi.org/10.1038/s41597-024-04228-6 (2024).

    Google Scholar 

  27. Small, C. Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing 22(7), 1305–1334, https://doi.org/10.1080/01431160151144369 (2001).

    Google Scholar 

  28. Ng, A. et al. Sparse autoencoder. CS294A Lecture Notes 72, 1–19 (2011).

    Google Scholar 

  29. Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 234–241. Springer, https://doi.org/10.1007/978-3-319-24574-4_28 (2015).

  30. Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Scientific Data 7(1), 168, https://doi.org/10.1038/s41597-020-0510-y (2020).

    Google Scholar 

  31. Zhang, L. et al. A prolonged artificial nighttime-light dataset of china (1984–2020). Scientific Data 11(1), 414, https://doi.org/10.1038/s41597-024-03223-1 (2024).

    Google Scholar 

  32. Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global viirs nighttime lights derived from monthly averages: 2012 to 2019. Remote Sensing 13(5), 922, https://doi.org/10.3390/rs13050922 (2021).

    Google Scholar 

  33. Zhao, M. et al. Building a series of consistent night-time light data (1992–2018) in southeast asia by integrating dmsp-ols and npp-viirs. IEEE Transactions on Geoscience and Remote Sensing 58(3), 1843–1856, https://doi.org/10.1109/TGRS.2019.2949797 (2020).

    Google Scholar 

  34. Arvidson, T., Gasch, J. & Goward, S. N. Landsat 7’s long-term acquisition plan – an innovative approach to building a global imagery archive. Remote Sensing of Environment 78(1–2), 13–26, https://doi.org/10.1016/S0034-4257(01)00263-2 (2001).

    Google Scholar 

  35. Wulder, M. A. et al. Current status of landsat program, science, and applications. Remote Sensing of Environment 225, 127–147, https://doi.org/10.1016/j.rse.2019.02.015 (2019).

    Google Scholar 

  36. Loveland, T. R. & Irons, J. R. Landsat 8: the plans, the reality, and the legacy. Remote Sensing of Environment 185, 1–6, https://doi.org/10.1016/j.rse.2016.07.033 (2016).

    Google Scholar 

  37. Masek, J. G. et al. A landsat surface reflectance dataset for north america, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3(1), 68–72, https://doi.org/10.1109/LGRS.2005.857030 (2006).

    Google Scholar 

  38. Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the landsat 8/oli land surface reflectance product. Remote Sensing of Environment 185, 46–56, https://doi.org/10.1016/j.rse.2016.04.008 (2016).

    Google Scholar 

  39. Roy, D. P. et al. Characterization of landsat-7 to landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment 185, 57–70, https://doi.org/10.1016/j.rse.2015.12.024 (2016).

    Google Scholar 

  40. Gong, P. et al. Annual maps of global artificial impervious area (gaia) between 1985 and 2018. Remote Sensing of Environment 236, 111510, https://doi.org/10.1016/j.rse.2019.111510 (2020).

    Google Scholar 

  41. Feijoo, D., Benito, J. C., Garcia, A. & Conde, M. V. Darkir: robust low-light image restoration. In Proceedings of the Computer Vision and Pattern Recognition Conference, pages 10879–10889, https://doi.org/10.48550/arXiv.2412.13443 (2025).

  42. Hore, A. & Ziou, D. Image quality metrics: psnr vs. ssim. In 2010 20th International Conference on Pattern Recognition, pages 2366–2369. IEEE, https://doi.org/10.1109/ICPR.2010.579 (2010).

  43. Wang, Z. & Bovik, A. C. A universal image quality index. IEEE Signal Processing Letters 9(3), 81–84, https://doi.org/10.1109/97.995823 (2002).

    Google Scholar 

  44. Tian, Y. et al. Extended viirs-like artificial nighttime light dataset of china (1986–2024). National Tibetan Plateau / Third Pole Environment Data Center, https://doi.org/10.11888/HumanNat.tpdc.302930 (2025).

  45. Zhang, L. et al. A prolonged artificial nighttime-light dataset of china (1984–2020). National Tibetan Plateau / Third Pole Environment Data Center, https://doi.org/10.11888/Socioeco.tpdc.271202 (2021).

  46. Chen, Z. et al. The global npp-viirs-like nighttime light data (version 2) for 1992–2024. Harvard Dataverse. Dataset, https://doi.org/10.7910/DVN/YGIVCD (2020).

  47. Chen, X., Zhang, F. & Wang, Z. A history reconstructed time series (1992–2011) of annual global npp-viirs-like nighttime light data through a super-resolution u-net model. figshare. Dataset, https://doi.org/10.6084/m9.figshare.22262545.v8 (2023).

Download references

Acknowledgements

This study is supported by National Key Research and Development Program of China (2022YFB3903703).

Author information

Author notes
  1. These authors contributed equally: Yihe Tian, Kwan Man Cheng.

Authors and Affiliations

  1. Department of Earth System Science, Ministry of Education, Ecological Field Station for East Asian Migratory Birds, Tsinghua University, Beijing, 100084, China

    Yihe Tian, Tao Zhang, Junning Feng & Bing Xu

  2. College of Letters & Science, University of Wisconsin-Madison, Madison, 53703, USA

    Kwan Man Cheng

  3. Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China

    Zhengbo Zhang

  4. China Association for International Exchange of Personnel, Beijing, 100038, China

    Zhehao Ren

  5. National Disaster Reduction Center of China, Beijing, 100124, China

    Suju Li

  6. Aerospace Information Research Institute, CAS, Beijing, 100094, China

    Dongmei Yan

Authors
  1. Yihe Tian
    View author publications

    Search author on:PubMed Google Scholar

  2. Kwan Man Cheng
    View author publications

    Search author on:PubMed Google Scholar

  3. Zhengbo Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Tao Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Junning Feng
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhehao Ren
    View author publications

    Search author on:PubMed Google Scholar

  7. Suju Li
    View author publications

    Search author on:PubMed Google Scholar

  8. Dongmei Yan
    View author publications

    Search author on:PubMed Google Scholar

  9. Bing Xu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Yihe Tian: Conceptualization, Methodology, Software, Validation, Formal analysis, Visualization, Writing Kwan Man Cheng: Conceptualization, Methodology, Resources, Validation, Formal analysis Zhengbo Zhang: Resources, Validation Tao Zhang: Review & Editing Zhehao Ren: Review & Editing Junning Feng: Review & Editing Suju Li: Review & Editing Dongmei Yan: Review & Editing Bing Xu: Review, Editing, Formal analysis, Funding acquisition, Supervision.

Corresponding author

Correspondence to Bing Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Cheng, K.M., Zhang, Z. et al. An Extended VIIRS-like Artificial Nighttime Light Data Reconstruction (1986–2024). Sci Data (2026). https://doi.org/10.1038/s41597-026-06549-0

Download citation

  • Received: 14 August 2025

  • Accepted: 29 December 2025

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41597-026-06549-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing