Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
A dataset of radiocarbon dates from Holarctic mammal collagen purified with high-quality chemistry
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 17 February 2026

A dataset of radiocarbon dates from Holarctic mammal collagen purified with high-quality chemistry

  • Salvador Herrando-Pérez  ORCID: orcid.org/0000-0001-6052-68541,2,
  • Kieren J. Mitchell2,3,
  • John R. Southon4,
  • Chris S. M. Turney  ORCID: orcid.org/0000-0001-6733-09935,6 &
  • …
  • Thomas W. Stafford Jr.7,8 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Mass spectrometry
  • Palaeoecology
  • Palaeontology

Abstract

Radiocarbon dates from megafaunal remains provide insights into climatic and anthropogenic factors shaping past ecosystems. Chronologies have advanced through rigorous chemical purification (pretreatment) of fossil vertebrate collagen for accelerator mass spectrometry (AMS) radiocarbon dating. We present MEGA14C, a comprehensive dataset of late Quaternary AMS radiocarbon dates for Holarctic large-bodied mammals, based on collagen purified by ultrafiltration (92% of records), XAD-2 purification (7%) and hydroxyproline isolation (1%). MEGA14C includes 11,715 dates spanning 8 orders, 23 families, 78 genera, 133 species and 18 subspecies, 27% from extinct taxa, and dominated by Equus, Bos, Mammuthus, Rangifer, Bison, Ursus, Cervus, Canis, Coelodonta and Sus. Where available, geolocation, genetic and isotopic data are provided. Pretreatment is critical for accurate and reproducible radiocarbon measurements, yet 44% of published dates lack this information. We addressed this gap through over 10,000 personal communications (out of >100,000 emails) with researchers and AMS laboratories among the parties involved in fossil dating. This unique dataset supports (pre)historical research and provides a foundation for future expansion and/or integration into a global radiocarbon repository.

Similar content being viewed by others

p3k14c, a synthetic global database of archaeological radiocarbon dates

Article Open access 27 January 2022

Systematic reconstruction of cellular trajectories across mouse embryogenesis

Article Open access 14 March 2022

Radiocarbon dating

Article 09 September 2021

Data availability

The dataset is available at https://doi.org/10.6084/m9.figshare.27826200.

Code availability

The R scripts developed for manipulating the MEGA14C dataset [Usage Notes/Calibrating 14C dates in MEGA14C] are available on figshare123. R is a programming language in a free software environment distributed under the terms of the GNU General Public License (www.R-project.org/Licenses).

References

  1. Swift, J. A. et al. Micro methods for megafauna: novel approaches to Late Quaternary extinctions and their contributions to faunal conservation in the Anthropocene. Bioscience 69, 877–887, https://doi.org/10.1093/biosci/biz105 (2019).

    Google Scholar 

  2. Taylor, R. E. & Bar-Yosef, O. Radiocarbon dating. An archaeological perspective. (Routhledge, 2016).

  3. Hajdas, I. et al. Radiocarbon dating. Nature Reviews Methods Primers 1, 62, https://doi.org/10.1038/s43586-021-00058-7 (2021).

    Google Scholar 

  4. Lowe, J. J. & Walker, M. Reconstructing Quaternary environments (Routledge, 2014).

  5. Martin, P. S. in Quaternary extinctions: a prehistoric revolution (eds P. S. Martin & R. G. Klein) 354-403 (University of Arizona Press, 1984).

  6. Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37, 215–250, https://doi.org/10.1146/annurev.ecolsys.34.011802.132415 (2006).

    Google Scholar 

  7. Moleón, M. et al. Rethinking megafauna. Proceedings of the Royal Society B 287, 20192643, https://doi.org/10.1098/rspb.2019.2643 (2020).

    Google Scholar 

  8. Saltré, F. et al. Climate-human interaction associated with southeast Australian megafauna extinction patterns. Nature Communications 10, 5311, https://doi.org/10.1038/s41467-019-13277-0 (2019).

    Google Scholar 

  9. Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75, https://doi.org/10.1126/science.1101476 (2004).

    Google Scholar 

  10. Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biological Reviews 94, 328–352, https://doi.org/10.1111/brv.12456 (2019).

    Google Scholar 

  11. Elias, S. A. Late Pleistocene megafaunal extinctions. Encyclopedia of Quaternary Science 6, 640–669, https://doi.org/10.1016/B978-0-323-99931-1.00037-4 (2025).

    Google Scholar 

  12. Kouvari, M. & van der Geer, A. A. E. Biogeography of extinction: the demise of insular mammals from the Late Pleistocene till today. Palaeogeography, Palaeoclimatology, Palaeoecology 505, 295–304, https://doi.org/10.1016/j.palaeo.2018.06.008 (2018).

    Google Scholar 

  13. Rozzi, R. et al. Dwarfism and gigantism drive human-mediated extinctions on islands. Science 379, 1054–1059, https://doi.org/10.1126/science.add8606 (2023).

    Google Scholar 

  14. Lemoine, R. T., Buitenwerf, R. & Svenning, J.-C. Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change. Anthropocene 44, 100403, https://doi.org/10.1016/j.ancene.2023.100403 (2023).

    Google Scholar 

  15. Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proceedings of the Royal Society B 281, 20133254, https://doi.org/10.1098/rspb.2013.3254 (2014).

    Google Scholar 

  16. Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proceedings of the National Academy of Sciences 109, 4527–4531, https://doi.org/10.1073/pnas.1113875109 (2012).

    Google Scholar 

  17. Johnson, C. N. et al. What caused extinction of the Pleistocene megafauna of Sahul? Proceedings of the Royal Society B 283, 20152399, https://doi.org/10.1098/rspb.2015.2399 (2016).

    Google Scholar 

  18. Nogués-Bravo, D., Ohlemüller, R., Batra, P. & Araújo, M. B. Climate predictors of late Quaternary extinctions. Evolution 64, 2442–2449, https://doi.org/10.1111/j.1558-5646.2010.01009.x (2010).

    Google Scholar 

  19. Holdaway, R. N. et al. An extremely low-density human population exterminated New Zealand moa. Nature Communications 5, 5436, https://doi.org/10.1038/ncomms6436 (2014).

    Google Scholar 

  20. Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nature Communications 12, 965, https://doi.org/10.1038/s41467-021-21201-8 (2021).

    Google Scholar 

  21. Lister, A. M. & Stuart, A. J. The extinction of the giant deer Megaloceros giganteus (Blumenbach): new radiocarbon evidence. Quaternary International 500, 185–203, https://doi.org/10.1016/j.quaint.2019.03.025 (2019).

    Google Scholar 

  22. Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proceedings of the National Academy of Sciences 113, 886–891, https://doi.org/10.1073/pnas.1504020112 (2016).

    Google Scholar 

  23. Araujo, B. B. A., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. S. Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quaternary International 431, 216–222, https://doi.org/10.1016/j.quaint.2015.10.045 (2017).

    Google Scholar 

  24. Campos, P. F. et al. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proceedings of the National Academy of Sciences 107, 5675–5680, https://doi.org/10.1073/pnas.0907189107 (2010).

    Google Scholar 

  25. Rawlence, N. J. et al. The effect of climate and environmental change on the megafaunal moa of New Zealand in the absence of humans. Quaternary Science Reviews 50, 141–153, https://doi.org/10.1016/j.quascirev.2012.07.004 (2012).

    Google Scholar 

  26. Ersmark, E. et al. Population demography and genetic diversity in the Pleistocene cave lion. Open Quaternary 1, Article 4, https://doi.org/10.5334/oq.aa (2015).

    Google Scholar 

  27. Dehasque, M. et al. Combining Bayesian age models and genetics to investigate population dynamics and extinction of the last mammoths in northern Siberia. Quaternary Science Reviews 259, 106913, https://doi.org/10.1016/j.quascirev.2021.106913 (2021).

    Google Scholar 

  28. Stanton, D. W. G. et al. Early Pleistocene origin and extensive intra-species diversity of the extinct cave lion. Scientific Reports 10, 12621, https://doi.org/10.1038/s41598-020-69474-1 (2020).

    Google Scholar 

  29. Llamas, B. et al. Late Pleistocene Australian marsupial DNA clarifies the affinities of extinct megafaunal kangaroos and wallabies. Molecular Biology and Evolution 32, 574–584, https://doi.org/10.1093/molbev/msu338 (2014).

    Google Scholar 

  30. Krajcarz, M. et al. Ancestors of domestic cats in Neolithic Central Europe: isotopic evidence of a synanthropic diet. Proceedings of the National Academy of Sciences 117, 17710–17719, https://doi.org/10.1073/pnas.1918884117 (2020).

    Google Scholar 

  31. Fages, A. et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell 177, 1419–1435, https://doi.org/10.1016/j.cell.2019.03.049 (2019).

    Google Scholar 

  32. Frantz, L. A. F. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231, https://doi.org/10.1126/science.aaf3161 (2016).

    Google Scholar 

  33. Ripple, W. J. et al. Are we eating the world’s megafauna to extinction. Conservation Letters 12, e12627, https://doi.org/10.1111/conl.12627 (2019).

    Google Scholar 

  34. Smith, F. A., Elliott Smith, R. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313, https://doi.org/10.1126/science.aao5987 (2018).

    Google Scholar 

  35. Estes, J. A. et al. Trophic downgrading of Planet Earth. Science 333, 301–306, https://doi.org/10.1126/science.1205106 (2011).

    Google Scholar 

  36. Dietl, G. P. & Flessa, K. W. Conservation paleobiology: putting the dead to work. Trends in Ecology & Evolution 26, 30–37, https://doi.org/10.1016/j.tree.2010.09.010 (2011).

    Google Scholar 

  37. Berti, E. & Svenning, J.-C. Megafauna extinctions have reduced biotic connectivity worldwide. Global Ecology and Biogeography 29, 2131–2142, https://doi.org/10.1111/geb.13182 (2020).

    Google Scholar 

  38. Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences 113, 838–846, https://doi.org/10.1073/pnas.1502540113 (2016).

    Google Scholar 

  39. Hofman, C. A., Rick, T. C., Fleischer, R. C. & Maldonado, J. E. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends in Ecology & Evolution 30, 540–549, https://doi.org/10.1016/j.tree.2015.06.008 (2015).

    Google Scholar 

  40. Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nature Communications 11, 699, https://doi.org/10.1038/s41467-020-14369-y (2020).

    Google Scholar 

  41. Davoli, M. et al. Megafauna diversity and functional declines in Europe from the Last Interglacial to the present. Global Ecology and Biogeography 33, 34–47, https://doi.org/10.1111/geb.13778 (2024).

    Google Scholar 

  42. Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Cambridge Prisms: Extinction 2, e5, https://doi.org/10.1017/ext.2024.4 (2024).

    Google Scholar 

  43. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100, https://doi.org/10.1126/science.aax3100 (2019).

    Google Scholar 

  44. Fisher, D. C. et al. X-ray computed tomography of two mammoth calf mummies. Journal of Paleontology 88, 664–675, https://doi.org/10.1666/13-092 (2014).

    Google Scholar 

  45. Boeskorov, G. G. et al. The preliminary analysis of cave lion cubs Panthera spelaea (Goldfuss, 1810) from the permafrost of Siberia. Quaternary 4, 24, https://doi.org/10.3390/quat4030024 (2021).

    Google Scholar 

  46. Harington, C. R. Vertebrate records | Late Pleistocene mummified mammals. Encyclopedia of Quaternary Science, 3197-3202 https://doi.org/10.1016/B0-44-452747-8/00267-2 (2007).

  47. Potapova, O. & Potapov, E. Late Pleistocene mummified mammals. Encyclopedia of Quaternary Science 6, 541–568, https://doi.org/10.1016/B978-0-323-99931-1.00275-0 (2025).

    Google Scholar 

  48. Lopatin, A. V. et al. Mummy of a juvenile sabre-toothed cat Homotherium latidens from the Upper Pleistocene of Siberia. Scientific Reports 14, 28016, https://doi.org/10.1038/s41598-024-79546-1 (2024).

    Google Scholar 

  49. Simons, E. L. & Alexander, H. L. Age of the Shasta ground sloth from Aden Crater, New Mexico. American Antiquity 29, 390–391, https://doi.org/10.2307/277883 (1964).

    Google Scholar 

  50. Libby, W. F. Radiocarbon dating (University of Chicago Press, 1952).

  51. Tamers, M. A. & Pearson, F. J. Validity of radiocarbon dates on bone. Nature 208, 1053–1055, https://doi.org/10.1038/2081053a0 (1965).

    Google Scholar 

  52. Taylor, R. E. in Radiocarbon after four decades: an interdisciplinary perspective (eds R. E. Taylor, Austin Long, & Renee S. Kra) 375-402 (Springer Science + Business Media, LLC).

  53. Olsson, I. U. Radiocarbon dating history: early days, questions, and problems met. Radiocarbon 51, 1–43, https://doi.org/10.1017/S0033822200033695 (2009).

    Google Scholar 

  54. Gillespie, R. Why date old bones? Nuclear Instruments and Methods in Physics Research Section B 29, 164–165, https://doi.org/10.1016/0168-583X(87)90228-X (1987).

    Google Scholar 

  55. Waterbolk, H. T. Working with radiocarbon dates. Proceedings of the Prehistoric Society 37, 15–33, https://doi.org/10.1017/S0079497X00012548 (1971).

    Google Scholar 

  56. Meltzer, D. J. & Mead, J. I. in Environments and extinctions: man in late glacial North America 145-173 (Cambridge University Press, 1985).

  57. Taylor, R. E. Radiocarbon dating of Pleistocene bone: toward criteria for the selection of samples. Radiocarbon 22, 969–979, https://doi.org/10.1017/S0033822200010390 (1980).

    Google Scholar 

  58. Becerra-Valdivia, L., Leal-Cervantes, R., Wood, R. & Higham, T. Challenges in sample processing within radiocarbon dating and their impact in 14C-dates-as-data studies. Journal of Archaeological Science 113, 105043, https://doi.org/10.1016/j.jas.2019.105043 (2020).

    Google Scholar 

  59. Higham, T. European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies. Antiquity 85, 235–249, https://doi.org/10.1017/S0003598X00067570 (2011).

    Google Scholar 

  60. Collins, M. J. et al. The survival of organic matter in bone: a review. Archaeometry. Bulletin of the Research Laboratory for Archaeology and the History of Art, Oxford University 44, 383–394, https://doi.org/10.1111/1475-4754.t01-1-00071 (2002).

    Google Scholar 

  61. Snoeck, C. & Lee-Thorp, J. A. Advances in the study of diagenesis of fossil and subfossil bones and teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 545, 109628, https://doi.org/10.1016/j.palaeo.2020.109628 (2020).

    Google Scholar 

  62. Thomas, B. & Taylor, S. Proteomes of the past: the pursuit of proteins in paleontology. Expert Review of Proteomics 16, 881–895, https://doi.org/10.1080/14789450.2019.1700114 (2019).

    Google Scholar 

  63. Briggs, D. E. G., Evershed, R. P. & Lockheart, M. J. The biomolecular paleontology of continental fossils. Paleobiology 26, 169–193, https://doi.org/10.1017/S0094837300026920 (2000).

    Google Scholar 

  64. Turner-Walker, G. in Advances in human palaeopathology (eds R. Pinhasi & S. Mays) 3-29 (Wiley, 2007).

  65. Herrando-Pérez, S. Bone need not remain an elephant in the room for radiocarbon dating. Royal Society Open Science 8, 201351, https://doi.org/10.1098/rsos.201351 (2021).

    Google Scholar 

  66. Bronk Ramsey, C. Radiocarbon dating: revolutions in understanding. Archaeometry 50, 249–275, https://doi.org/10.1111/j.1475-4754.2008.00394.x (2008).

    Google Scholar 

  67. Crann, C. A. & Grant, T. Radiocarbon age of consolidants and adhesives used in archaeological conservation. Journal of Archaeological Science: Reports 24, 1059–1063, https://doi.org/10.1016/j.jasrep.2019.03.023 (2019).

    Google Scholar 

  68. Wood, R. E. From revolution to convention: the past, present and future of radiocarbon dating. Journal of Archaeological Science 56, 61–72, https://doi.org/10.1016/j.jas.2015.02.019 (2015).

    Google Scholar 

  69. Taylor, R. E. & Bar-Yosef, O. in Radiocarbon dating: an archaeological perspective 65-97. https://doi.org/10.4324/9781315421216 (Taylor & Francis Group, 2014).

  70. Hedges, R. E. M. & Van Klinken, G. J. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS. Radiocarbon 34, 279–291, https://doi.org/10.1017/S0033822200063438 (1992).

    Google Scholar 

  71. Hodgins, G. W. L. in Encyclopedia of scientific dating methods (eds W. J. Rink & J. Thompson) 1–8 (Springer, 2013).

  72. Jull, A. J. T. & Burr, G. S. in Encyclopedia of Scientific Dating Methods (eds W. Jack Rink & Jeroen W. Thompson) 669-676 (Springer, 2015).

  73. Gajewski, K. et al. The Canadian Archaeological Radiocarbon Database (CARD): archaeological 14C dates in North America and their paleoenvironmental context. Radiocarbon 53, 371–394, https://doi.org/10.1017/S0033822200056630 (2011).

    Google Scholar 

  74. Bronk Ramsey, C., Blaauw, M., Kearney, R. & Staff, R. A. The importance of open access to chronological information: the IntChron initiative. Radiocarbon 61, 1121–1131, https://doi.org/10.1017/RDC.2019.21 (2019).

    Google Scholar 

  75. Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quaternary Research 89, 156–177, https://doi.org/10.1017/qua.2017.105 (2018).

    Google Scholar 

  76. Peters, S. E. & McClennen, M. The Paleobiology Database application programming interface. Paleobiology 42, 1–7, https://doi.org/10.1017/pab.2015.39 (2016).

    Google Scholar 

  77. Roe, J., Schmid, C., Ebrahimiabareghi, S., Heitz, C. & Hinz, M. XRONOS: an open data infrastructure for archaeological chronology. Journal of Computer Applications in Archaeology https://doi.org/10.5334/jcaa.191 (2025).

    Google Scholar 

  78. Pettitt, P. B., Davies, W., Gamble, C. S. & Richards, M. B. Palaeolithic radiocarbon chronology: quantifying our confidence beyond two half-lives. Journal of Archaeological Science 30, 1685–1693, https://doi.org/10.1016/S0305-4403(03)00070-0 (2003).

    Google Scholar 

  79. Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25, https://doi.org/10.1038/d41586-018-05330-7 (2018).

    Google Scholar 

  80. Wood, R. E. et al. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proceedings of the National Academy of Sciences 110, 2781–2786, https://doi.org/10.1073/pnas.1207656110 (2013).

    Google Scholar 

  81. Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geological Journal 50, 338–363, https://doi.org/10.1002/gj.2633 (2015).

    Google Scholar 

  82. Herrando-Pérez, S. & Stafford, T. W. Jr. Making vertebrate fossil radiocarbon dates more useful for global scientific research. Journal of Quaternary Science 40, 1309–1335, https://doi.org/10.1002/jqs.70012 (2025).

    Google Scholar 

  83. van der Sluis, L. G., Zazzo, A., Tombret, O., Thil, F. & Pétillon, J. M. Testing the use of XAD resin to remove synthetic contamination from archaeological bone prior to radiocarbon dating. Radiocarbon 65, 1160–1175, https://doi.org/10.1017/RDC.2023.100 (2023).

  84. Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242, https://doi.org/10.1038/230241a0 (1971).

    Google Scholar 

  85. Pang, S. et al. Comparison of different protocols for demineralization of cortical bone. Scientific Reports 11, 7012, https://doi.org/10.1038/s41598-021-86257-4 (2021).

    Google Scholar 

  86. Sinex, F. M. & Faris, B. Isolation of gelatin from ancient bones. Science 129, 969, https://doi.org/10.1126/science.129.3354.969 (1959).

    Google Scholar 

  87. Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177, https://doi.org/10.1017/S0033822200044118 (1988).

    Google Scholar 

  88. Stafford, T. W. Jr., Brendel, K. & Duhamel, R. C. Radiocarbon, 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochimica et Cosmochimica Acta 52, 2257–2267, https://doi.org/10.1016/0016-7037(88)90128-7 (1988).

    Google Scholar 

  89. Stafford, T. W. Jr., Duhamel, R. C., Haynes, C. V. Jr. & Brendel, K. Isolation of proline and hydroxyproline from fossil bone. Life Sciences 31, 931–938, https://doi.org/10.1016/0024-3205(82)90551-3 (1982).

    Google Scholar 

  90. Gillespie, R., Hedges, R. E. M. & Wand, J. O. Radiocarbon dating of bone by accelerator mass spectrometry. Journal of Archaeological Science 11, 165–170, https://doi.org/10.1016/0305-4403(84)90051-7 (1984).

    Google Scholar 

  91. Devièse, T. et al. Increasing accuracy for the radiocarbon dating of sites occupied by the first Americans. Quaternary Science Reviews 198, 171–180, https://doi.org/10.1016/j.quascirev.2018.08.023 (2018).

    Google Scholar 

  92. Fuller, B. T. et al. Ultrafiltration for asphalt removal from bone collagen for radiocarbon dating and isotopic analysis of Pleistocene fauna at the tar pits of Rancho La Brea, Los Angeles, California. Quaternary Geochronology 22, 85–98, https://doi.org/10.1016/j.quageo.2014.03.002 (2014).

    Google Scholar 

  93. Iwase, A., Hashizume, J., Izuho, M., Takahashi, K. & Sato, H. Timing of megafaunal extinction in the late Late Pleistocene on the Japanese Archipelago. Quaternary International 255, 114–124, https://doi.org/10.1016/j.quaint.2011.03.029 (2012).

    Google Scholar 

  94. Surovell, T. A., Boyd, J. R., Haynes, C. V. Jr. & Hodgins, G. W. L. On the dating of the folsom complex and its correlation with the Younger Dryas, the end of Clovis, and megafaunal extinction. PaleoAmerica 2, 81–89, https://doi.org/10.1080/20555563.2016.1174559 (2016).

    Google Scholar 

  95. Marom, A., McCullagh, J. S. O., Higham, T. F. G. & Hedges, R. E. M. Hydroxyproline dating: experiments on the 14C analysis of contaminated and low-collagen bones. Radiocarbon 55, 698–708, https://doi.org/10.1017/S0033822200057854 (2013).

    Google Scholar 

  96. Talamo, S. & Richards, M. A comparison of bone pretreatment methods for AMS dating of samples >30,000 BP. Radiocarbon 53, 443–449, https://doi.org/10.1017/S0033822200034573 (2011).

    Google Scholar 

  97. Politis, G. G., Messineo, P. G., Stafford, T. W. Jr. & Lindsey, E. L. Campo Laborde: a Late Pleistocene giant ground sloth kill and butchering site in the Pampas. Science Advances 5, eaau4546, https://doi.org/10.1126/sciadv.aau4546 (2019).

    Google Scholar 

  98. Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nature Ecology & Evolution 3, 31–38, https://doi.org/10.1038/s41559-018-0722-0 (2019).

    Google Scholar 

  99. Waters, M. R., Stafford, T. W. Jr., Kooyman, B. & Hills, L. V. Late Pleistocene horse and camel hunting at the southern margin of the ice-free corridor: reassessing the age of Wally’s Beach, Canada. Proceedings of the National Academy of Sciences 112, 4263–4267, https://doi.org/10.1073/pnas.1420650112 (2015).

    Google Scholar 

  100. Higham, T. F. G., Jacobi, R. M. & Bronk Ramsey, C. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48, 179–195, https://doi.org/10.1017/S0033822200066388 (2006).

    Google Scholar 

  101. Spindler, L. et al. Dating the last Middle Palaeolithic of the Crimean Peninsula: new hydroxyproline AMS dates from the site of Kabazi II. Journal of Human Evolution 156, 102996, https://doi.org/10.1016/j.jhevol.2021.102996 (2021).

    Google Scholar 

  102. Zazula, G. D. et al. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change. Proceedings of the National Academy of Sciences 111, 18460–18465, https://doi.org/10.1073/pnas.1416072111 (2014).

    Google Scholar 

  103. Zazula, G. D. et al. A case of early Wisconsinan “over-chill”: new radiocarbon evidence for early extirpation of western camel (Camelops hesternus) in eastern Beringia. Quaternary Science Reviews 171, 48–57, https://doi.org/10.1016/j.quascirev.2017.06.031 (2017).

    Google Scholar 

  104. Brock, F., Ramsey, C. B. & Higham, T. Quality assurance of ultrafiltered bone dating. Radiocarbon 49, 187–192, https://doi.org/10.1017/S0033822200042107 (2007).

    Google Scholar 

  105. Higham, T. F. G., Jacobi, R. M. & Ramsey, C. B. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48, 179–195, https://doi.org/10.1017/S0033822200066388 (2006).

    Google Scholar 

  106. Devièse, T., Comeskey, D., McCullagh, J., Bronk Ramsey, C. & Higham, T. New protocol for compound-specific radiocarbon analysis of archaeological bones. Rapid Communications in Mass Spectrometry 32, 373–379, https://doi.org/10.1002/rcm.8047 (2018).

    Google Scholar 

  107. van Klinken, G. J. & Mook, W. G. Preparative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen. Radiocarbon 32, 155–164, https://doi.org/10.1017/S0033822200040157 (1990).

    Google Scholar 

  108. van Klinken, G. J. & Hedges, R. E. M. Experiments on collagen-humic interactions: speed of humic uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22, 263–270, https://doi.org/10.1006/jasc.1995.0028 (1995).

    Google Scholar 

  109. Hatté, C., Morvan, J., Noury, C. & Paterne, M. Is classical Acid-Alkali-Acid treatment responsible for contamination? An alternative proposition. Radiocarbon 43, 177–182, https://doi.org/10.1017/S003382220003798X (2001).

    Google Scholar 

  110. Brock, F. et al. Testing the effectiveness of protocols for removal of common conservation treatments for radiocarbon dating. Radiocarbon 60, 35–50, https://doi.org/10.1017/RDC.2017.68 (2018).

    Google Scholar 

  111. Dee, M. W., Brock, F., Bowles, A. D. & Bronk Ramsey, C. Using a silica substrate to monitor the effectiveness of radiocarbon pretreatment. Radiocarbon 53, 705–711, https://doi.org/10.1017/S0033822200039151 (2011).

    Google Scholar 

  112. Bruhn, F., Duhr, A., Grootes, P. M., Mintrop, A. & Nadeau, M.-J. Chemical removal of conservation substances by “Soxhlet”-type extraction. Radiocarbon 43, 229–237, https://doi.org/10.1017/S0033822200038054 (2001).

    Google Scholar 

  113. Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626, https://doi.org/10.1002/ecy.2443 (2018).

    Google Scholar 

  114. Arnold, J. R. & Libby, W. F. Radiocarbon dates. Science 113, 111–120, https://doi.org/10.1126/science.113.2927.111 (1951).

    Google Scholar 

  115. Libby, W. F. Radiocarbon dates, II. Science 114, 291–296, https://doi.org/10.1126/science.114.2960.291 (1951).

    Google Scholar 

  116. de Vries, H. & Waterbolk, H. T. Groningen radiocarbon dates III. Science 128, 1550–1556, https://doi.org/10.1126/science.128.3338.1550 (1958).

    Google Scholar 

  117. Libby, W. F. Chicago radiocarbon dates, III. Science 116, 673–681, https://doi.org/10.1126/science.116.3025.673 (1952).

    Google Scholar 

  118. Libby, W. F. Chicago radiocarbon dates, IV. Science 119, 135–140, https://doi.org/10.1126/science.119.3083.135 (1954).

    Google Scholar 

  119. De Vries, H. L. & Barendsen, G. W. Measurements of age by the Carbon-14 technique. Nature 174, 1138–1141, https://doi.org/10.1038/1741138a0 (1954).

    Google Scholar 

  120. Deevey, E. S. Zero BP plus 34: 25 years of radiocarbon. Radiocarbon 26, 1–6, https://doi.org/10.1017/S003382220000641X (1984).

    Google Scholar 

  121. Higham, T. F. G. et al. Radiocarbon dates from the Oxford AMS System: Archaeometry datelist 36. Archaeometry 60, 628–640, https://doi.org/10.1111/arcm.12372 (2018).

    Google Scholar 

  122. Flint, R. F. & Deevey, E. S. Editorial statement. Radiocarbon 4, i–ii (1962).

    Google Scholar 

  123. Herrando-Pérez, S. MEGA14C: a database of radiocarbon dates from Holarctic mammal collagen purified with high-quality chemistry. figshare https://doi.org/10.6084/m9.figshare.27826200 (2025).

  124. Brock, F., Geoghegan, V., Thomas, B., Jurkschat, K. & Higham, T. F. G. Analysis of bone “collagen” extraction products for. radiocarbon dating. Radiocarbon 55, 445–463, https://doi.org/10.1017/S0033822200057581 (2013).

    Google Scholar 

  125. Hüls, C. M., Grootes, P. M. & Nadeau, M. J. Ultrafiltration: boon or bane? Radiocarbon 51, 613–625, https://doi.org/10.1017/S003382220005596X (2009).

    Google Scholar 

  126. Brock, F., Bronk Ramsey, C. & Higham, T. Quality assurance of ultrafiltered bone dating. Radiocarbon 49, 187–192, https://doi.org/10.1017/S0033822200042107 (2007).

    Google Scholar 

  127. Bronk Ramsey, C., Higham, T. F. G., Bowles, A. & Hedges, R. E. M. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46, 155–163, https://doi.org/10.1017/S0033822200039473 (2004).

    Google Scholar 

  128. Bronk Ramsey, C., Higham, T. F. G. & Pearson, J. A. Bone pretreatment by ultrafiltration. A report on unintended radiocarbon age offsets introduced by the method. 1-23 (English Heritage, Swindon, UK, 2011).

  129. Talamo, S. et al. The new 14C chronology for the Palaeolithic site of La Ferrassie, France: the disappearance of Neanderthals and the arrival of Homo sapiens in France. Journal of Quaternary Science 35, 961–973, https://doi.org/10.1002/jqs.3236 (2020).

    Google Scholar 

  130. Benedetti, M. M., Haws, J. A., Bicho, N. F., Friedl, L. & Ellwood, B. B. Late Pleistocene site formation and paleoclimate at Lapa do Picareiro, Portugal. Geoarchaeology 34, 698–726, https://doi.org/10.1002/gea.21735 (2019).

    Google Scholar 

  131. Alex, B., Valde-Nowak, P., Regev, L. & Boaretto, E. Late Middle Paleolithic of Southern Poland: radiocarbon dates from Ciemna and Obłazowa caves. Journal of Archaeological Science: Reports 11, 370–380, https://doi.org/10.1016/j.jasrep.2016.12.012 (2017).

    Google Scholar 

  132. da Silva Coelho, F. A. et al. Ancient bears provide insights into Pleistocene ice age refugia in Southeast Alaska. Molecular Ecology 32, 3641–3656, https://doi.org/10.1111/mec.16960 (2023).

    Google Scholar 

  133. Stuiver, M. & Polach, H. A. Discussion. Reporting of 14C data. Radiocarbon 19, 355–363, https://doi.org/10.1017/S0033822200003672 (1977).

    Google Scholar 

  134. Giorgi, F. M., Ceraolo, C. & Mercatelli, D. The R language: an engine for bioinformatics and data science. Life 12, 648, https://doi.org/10.3390/life12050648 (2022).

    Google Scholar 

  135. Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62, 725–757, https://doi.org/10.1017/RDC.2020.41 (2020).

    Google Scholar 

  136. Heaton, T. J. et al. Marine20—The marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon 62, 779–820, https://doi.org/10.1017/RDC.2020.68 (2020).

    Google Scholar 

  137. Herrando-Pérez, S. & Saltré, F. Estimating extinction time using radiocarbon dates. Quaternary Geochronology 79, 101489, https://doi.org/10.1016/j.quageo.2023.101489 (2024).

    Google Scholar 

  138. Dege, D. & Brüggemann, P. Marketing analytics with RStudio: a software review. Journal of Marketing Analytics 12, 465–470, https://doi.org/10.1057/s41270-023-00264-0 (2024).

    Google Scholar 

Download references

Acknowledgements

Research funded through Australian Research Council’s Discovery Project DP170104665 and the University of New South Wales (UNSW), Australia. Publication fees funded by School of Biological Sciences/University of Adelaide, Australia. Publication fees were shared by Heriot-Watt University (CST), University of California - Irvine (JRS), and Department of Biogeography and Global Change - Museo Nacional de Ciencias Naturales - Spanish National Research Council (SHP). We are extremely grateful to the hundreds of authors who shared methodological information associated with the 14C dates included in MEGA14C when contacted about their published research. Each contribution has been invaluable and is cited as a personal communication within the dataset. We particularly acknowledge (given the very high volume of communications) Ronny Friedrich, Tomasz Goslar, Irka Hajdas, Emma Henderson, Gregory Hodgins, Marie Kanstrup, Adrian Lister, Greg McDonald (who also provided comments on a preliminary draft), Melanie Mucke, Adam Nadachowski, Paula Reimer, and Chris Widga (who also peer-reviewed the submitted manuscript for Scientific Data).

Author information

Authors and Affiliations

  1. Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), 28006, Madrid, Spain

    Salvador Herrando-Pérez

  2. School of Biological Sciences, Adelaide University, Adelaide, South Australia, 5005, Australia

    Salvador Herrando-Pérez & Kieren J. Mitchell

  3. Bioeconomy Science Institute, Lincoln, Canterbury, 7608, New Zealand

    Kieren J. Mitchell

  4. Earth System Science Department, University of California, Irvine, CA, 92697, USA

    John R. Southon

  5. School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK

    Chris S. M. Turney

  6. School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

    Chris S. M. Turney

  7. Stafford Research LLC, 3419 Candlelight Drive NE, Albuquerque, NM, 87111, USA

    Thomas W. Stafford Jr.

  8. New Mexico Museum of Natural History & Science, Albuquerque, NM, 87104, USA

    Thomas W. Stafford Jr.

Authors
  1. Salvador Herrando-Pérez
    View author publications

    Search author on:PubMed Google Scholar

  2. Kieren J. Mitchell
    View author publications

    Search author on:PubMed Google Scholar

  3. John R. Southon
    View author publications

    Search author on:PubMed Google Scholar

  4. Chris S. M. Turney
    View author publications

    Search author on:PubMed Google Scholar

  5. Thomas W. Stafford Jr.
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.H.P. conceived the idea, reviewed the literature, collated and curated the data, communicated with researchers, curators, technicians and AMS facilities, built the dataset, and wrote the first draft of the manuscript and the R scripts. T.W.S. contributed archival data from 1988 to present, contacts for researchers and institutions, discussion and details on 14C protein chemistry and edited preliminary and final drafts of the manuscript. J.R.S. contributed sample processing details for Lawrence Livermore National Laboratory, Livermore (to 2001; CAMS) and University of California, Irvine (2001 to present; UCIAMS), contacts for researchers and institutions and chemical discussions. K.J.M. advised on selection and formatting of dataset metadata fields and categories, provided feedback on early iterations of the dataset design, participated in discussions about megafauna chronologies, revised the R script manual and contributed to the writing of the manuscript. C.S.T. contributed funding for the project, gave advice on the dataset and contributed to the writing.

Corresponding author

Correspondence to Salvador Herrando-Pérez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrando-Pérez, S., Mitchell, K.J., Southon, J.R. et al. A dataset of radiocarbon dates from Holarctic mammal collagen purified with high-quality chemistry. Sci Data (2026). https://doi.org/10.1038/s41597-026-06562-3

Download citation

  • Received: 22 November 2024

  • Accepted: 05 January 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06562-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing